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1 Introduction

Using methods from calculus, we combine classical identities for =, In 2, and harmonic
numbers, to derive a nice infinite series formula for 7/3 that does not appear to be well
known. In addition, we give twenty-seven related identities involving 7 and other
irrational numbers.

2 Main identity and proof

Recall the identity known in the literature as the Gregory—Leibniz Formula for 7 [1]:
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This identity is immediate from the Maclaurin series expansion of arctanx at x = 1.
We prove another infinite series formula that can be used to compute the value of 7.

Theorem 1. We have the identity
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Proof. We begin with the Maclaurin series for the natural logarithm of 2:
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We will use the limit laws from calculus. Rewrite (2) as
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thus
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Euler [2] found the difference between the kth harmonic number and In k£ approaches
a constant v = 0.5772.. .. (the so-called Euler-Mascheroni constant), so we have

1 1 1 1
li I1+4-4+-4+-4++——-—In(2 =7. 4
ng{.lo<—|—2+3—|—4+ +2n n(n)) v (4)

By adding the limits from Equations (2) and (4), dividing by 2 and writing In(2n) =
In2 + Inn, we find
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By splitting the sum on the left in half and reorganising, Equation (5) may be rewritten
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Now, substitute n/2 for n in (5), then subtract % In 2 from both sides, to arrive at
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Adding the corresponding sides of (6) and (7), then subtracting % In2 + 7/2 from the
resulting equation, gives
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Next, we will use Leibniz’s Formula (1), which we can write in the form
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If we add the limits from (5) and (9), and divide both sides by 2, then we find
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Subtracting 1/2 times the limit in (5) from this equation gives
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Adding 1/2 times equation (8) to both sides of this expression yields
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which can be rewritten as
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Subtracting equation (3) from (10) yields
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Finally, multiplication by 8/3 gives the formula in the theorem. O

Remark 2. Multiplying both sides of Theorem 1 by 3 produces a summation formula whose
n = 1 term is 3, and whose remaining terms give a formula for the fractional part of
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3 Further identities

During the writing of this paper, the author also found a large number of related sum-
mation identities by combining Theorem 1 with other equations in the proof above,
along with well-known zeta function identities of Euler (see [2]), such as
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and other classical summation identities found in [3]. Below, there is a selection of
these identities given without proof, loosely organized by number of factors in the
denominators of the summands. The first identity follows from the telescoping series
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the second and third identities follow by rewriting (2) and (9), respectively, and the rest
arise from liberal use of partial fractions and recursion relations.
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The interested reader might like to prove the following results:
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Further identities like these can be discovered. For instance, since
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the reader could use the right-hand sides of (15) and (16) to find the value of
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One might apply similar steps to other equations above, to find other new identities.
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