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Infinite series for π/3 and other identities
Robert Schneider1

In celebration of Pi Day 20222

1 Introduction

Using methods from calculus, we combine classical identities for π, ln 2, and harmonic
numbers, to derive a nice infinite series formula for π/3 that does not appear to be well
known. In addition, we give twenty-seven related identities involving π and other
irrational numbers.

2 Main identity and proof

Recall the identity known in the literature as the Gregory–Leibniz Formula for π [1]:

π

4
= 1− 1

3
+
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9
− · · · . (1)

This identity is immediate from the Maclaurin series expansion of arctanx at x = 1.
We prove another infinite series formula that can be used to compute the value of π.

Theorem 1. We have the identity

π

3
=

∞∑
n=1

1

n(2n− 1)(4n− 3)
.

Proof. We begin with the Maclaurin series for the natural logarithm of 2:

∞∑
n=1

(−1)n+1

n
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+ · · ·+ 1
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)
= ln 2 . (2)

We will use the limit laws from calculus. Rewrite (2) as

∞∑
n=1

(
1

2n− 1
− 1

2n

)
=

∞∑
n=1

1

2n(2n− 1)
= ln 2 ;
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thus
∞∑
n=1

1

4n(4n− 2)
=

1

4

∞∑
n=1

1

2n(2n− 1)
=

1

4
ln 2 . (3)

Euler [2] found the difference between the kth harmonic number and ln k approaches
a constant γ = 0.5772 . . . (the so-called Euler-Mascheroni constant), so we have

lim
n→∞
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1
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+ · · ·+ 1

2n
− ln(2n)

)
= γ. (4)

By adding the limits from Equations (2) and (4), dividing by 2 and writing ln(2n) =
ln 2 + lnn, we find

lim
n→∞
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)
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Thus,

lim
n→∞
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2
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)
= ln 2 +

1

2
γ . (5)

By splitting the sum on the left in half and reorganising, Equation (5) may be rewritten

lim
n→∞
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1
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1
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+ · · ·+ 1
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)
(6)

= ln 2 +
1
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.

Now, substitute n/2 for n in (5), then subtract 1
2
ln 2 from both sides, to arrive at

1

2
ln 2 +

1

2
γ = lim

n→∞

(
1 +

1

3
+

1

5
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− 1

2
lnn

)
. (7)

Adding the corresponding sides of (6) and (7), then subtracting 1
2
ln 2 + γ/2 from the

resulting equation, gives

lim
n→∞

(
1

n+ 1
+

1

n+ 3
+ · · ·+ 1

2n− 1

)
=

1

2
ln 2 . (8)

Next, we will use Leibniz’s Formula (1), which we can write in the form

lim
n→∞

(
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1
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7
+ · · ·+ 1

2n− 3
− 1
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)
=

π

4
. (9)

If we add the limits from (5) and (9), and divide both sides by 2, then we find
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n→∞
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)
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Subtracting 1/2 times the limit in (5) from this equation gives

lim
n→∞

(
1− 1

2
+

1

5
− 1

6
+ · · ·+ 1

2n− 3
− 1

2n− 2

)
− 1

2

(
1

n+ 1
+

1
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)
=

π

8
.

Adding 1/2 times equation (8) to both sides of this expression yields

lim
n→∞

(
1− 1

2
+

1

5
− 1

6
+ · · ·+ 1

2n− 3
− 1

2n− 2

)
=

π

8
+

1

4
ln 2,

which can be rewritten as
∞∑
n=1

(
1

4n− 3
− 1

4n− 2

)
=

∞∑
n=1

1

(4n− 2)(4n− 3)
=

π

8
+

1

4
ln 2 . (10)

Subtracting equation (3) from (10) yields
∞∑
n=1

(
1

(4n− 2)(4n− 3)
− 1

4n(4n− 2)

)
=

∞∑
n=1

3

4n(4n− 2)(4n− 3)
=

π

8
.

Finally, multiplication by 8/3 gives the formula in the theorem. 2

Remark 2. Multiplying both sides of Theorem 1 by 3 produces a summation formula whose
n = 1 term is 3, and whose remaining terms give a formula for the fractional part of π:

3
∞∑
n=2

1

n(2n− 1)(4n− 3)
= 0.14159265 . . . .

3 Further identities

During the writing of this paper, the author also found a large number of related sum-
mation identities by combining Theorem 1 with other equations in the proof above,
along with well-known zeta function identities of Euler (see [2]), such as

∞∑
n=1

1

n2
=

π2

6
,

and other classical summation identities found in [3]. Below, there is a selection of
these identities given without proof, loosely organized by number of factors in the
denominators of the summands. The first identity follows from the telescoping series

(1− 1/2) + (1/2− 1/3) + (1/3− 1/4) + · · · ,

the second and third identities follow by rewriting (2) and (9), respectively, and the rest
arise from liberal use of partial fractions and recursion relations.
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The interested reader might like to prove the following results:

∞∑
n=1

1

(2n− 1)(2n+ 1)
=

1

2
(11)

∞∑
n=1

1

(n+ 1)(2n+ 1)
= 2 ln 2 (12)

∞∑
n=1

1

(4n− 1)(4n− 3)
=

π

8
(13)

∞∑
n=1

1

(2n− 1)(4n− 3)
=

π + 2 ln 2

4
(14)

∞∑
n=1

1

n(4n− 3)
=

π + 6 ln 2

6
(15)

∞∑
n=1

1

n(4n− 1)
=

6 ln 2− π

2
(16)

∞∑
n=1

1

(2n− 1)(4n− 1)(4n− 3)
=

ln 2

2
(17)

∞∑
n=1

1

n(n+ 1)(2n+ 1)
=

2 ln 2− 1

2
(18)

∞∑
n=1

1

(4n+ 1)(4n− 1)(4n− 3)
=

π − 2

16
(19)

∞∑
n=1

1

n2(2n− 1)
=

24 ln 2− π2

6
(20)

∞∑
n=1

1

n2(4n− 1)
=

72 ln 2− 12π − π2

6
(21)

∞∑
n=1

1

n(n+ 1)2
=

12− π2

6
(22)

∞∑
n=1

1

n2(2n+ 1)
=

π2 + 24 ln 2− 24

6
(23)

∞∑
n=1

1

n2(n+ 1)
=

π2 − 6

6
(24)

∞∑
n=1

1

n2(n+ 1)2
=

π2 − 9

3
(25)
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∞∑
n=1

1

(2n+ 1)(2n− 1)(4n+ 1)(4n− 1)
=

π − 3

6
(26)

∞∑
n=1

1

(4n+ 1)(4n− 1)(8n+ 1)(8n− 1)
=

π(1 + 2
√
2)− 12

24
(27)

∞∑
n=1

1

n(2n− 1)(4n− 1)(4n− 3)
=

6 ln 2− π

3
(28)

∞∑
n=1

1

n2(n+ 1)(2n+ 1)
=

π2 − 12 ln 2

6
(29)

∞∑
n=1

1

n2(2n− 1)(4n− 3)
=

π2 + 8π − 24 ln 2

18
(30)

∞∑
n=1

1

n2(2n− 1)(4n− 1)
=

π2 + 24π − 120 ln 2

6
(31)

∞∑
n=1

1

n2(2n− 1)(4n− 1)(4n− 3)
=

168 ln 2− 32π − π2

18
(32)

∞∑
n=1

1

n(2n+ 1)(2n− 1)(6n+ 1)(6n− 1)
=

52− 32 ln 2− 27 ln 3

16
(33)

∞∑
n=1

1

n(2n+ 1)(2n− 1)(3n+ 1)(3n− 1)
=

19 + 16 ln 2− 27 ln 3

10
(34)

∞∑
n=1

1

n3(n+ 1)3
= 10− π2 (35)

∞∑
n=1

1

(2n+ 1)(2n− 1)(4n+ 1)(4n− 1)(8n+ 1)(8n− 1)
=

45− π(3 + 8
√
2)

6
(36)

∞∑
n=1

1

n(2n+ 1)(2n− 1)(3n+ 1)(3n− 1)(6n+ 1)(6n− 1)
=

64 ln 2 + 27 ln 3− 74

20
. (37)

Further identities like these can be discovered. For instance, since

∞∑
n=1

1

n(4n− 3)
−

∞∑
n=1

1

n(4n− 1)
=

∞∑
n=1

(4n− 1)− (4n− 3)

n(4n− 1)(4n− 3)
= 2

∞∑
n=1

1

n(4n− 1)(4n− 3)
,

the reader could use the right-hand sides of (15) and (16) to find the value of

∞∑
n=1

1

n(4n− 1)(4n− 3)
.

One might apply similar steps to other equations above, to find other new identities.
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