Parabola Volume 58, Issue 2 (2022)

Optimizing computer vision networks with fast Fourier
transforms and the Convolution Theorem

Emmet Houghton'

1 Abstract

The incredible potential of artificial intelligence for the development of computer vision-
based emerging technologies has made the optimization and application of convolu-
tional neural networks (CNNs) the focus of significant research in recent years. This
paper discusses the mathematics behind convolution and Fourier transformations and
presents experiments that support the integration of a two-dimensional discrete Fast
Fourier Transformation (FFT) layer into a CNN to minimize the computational costs of
solving computer vision problems. The advantage of representing images in the fre-
quency domain is that, by leveraging the power of FFT, convolutions can be calculated
with a lower time complexity than traditionally possible. The experiments outlined in
the paper validate the theoretical efficiency gained by FFT for images of varying sizes.
The reduced computation time enabled by the application of these mathematics allows
for the fitting of CNNs to datasets larger in both scale and resolution without requir-
ing an increase in processing power. In this way, CNNs can be optimized to execute
extensive image processing tasks in fields ranging from health care and transportation
to robotics and cybersecurity, redefining the boundaries for the combined power of
human and computer vision for the future of artificial intelligence solutions.

2 Introduction

Many emerging technologies of the last decade have leveraged an increasingly robust
understanding of artificial intelligence along with the powerful and accessible proces-
sors of modern computers to solve complex computer vision problems. An integral
part of these developments has been the convolutional neural network (CNN), a deep
learning framework whose design is grounded in the mechanisms of the biological vi-
sual cortex as well as the structure of the traditional artificial neural network [6]. The
CNN is the machine learning class that is largely responsible for many renowned inno-
vations in image processing such as facial recognition, object detection, and Al-assisted
medical diagnostics [13]. Naturally, maximizing the efficiency of CNNs is a pursuit of

!Emmet Houghton is a final-year student at Pingry School, New Jersey, USA.

interest to the research community. The primary purpose of this paper will be to out-
line and experimentally prove the mathematical theory that allows for convolutions
to be calculated in the frequency domain and to be optimized using two-dimensional
discrete fast Fourier transformations.

3 Theoretical Background

3.1 Two-Dimensional Convolution

The foundational mathematical concept utilized by CNNs for image processing is con-
volution. Convolution is a powerful mathematical operation integral to image filtering
and the design of CNNs. As machines are unable to visually perceive images with light
as humans do, an image must be converted to a matrix of numerical values in order
for the computer to analyze characteristics of the image. Typically, these values repre-
sent brightness, RGB, or HSV values. Convolving this matrix of values representing an
image is useful for various image processing purposes including sharpening, blurring,
and edge detection.

As convolution requires two operands, a filter or “kernel” matrix must be defined in

order to be applied to the original image matrix. Figures 1 and 2 present two examples
of 3x3 filter matrices, taken from [3]:

000 -1 -1 -1
010 -1 8 -1
000 -1 -1 -1

Figure 1.3x3 identity kernel =~ Figure 2.3x3 edge detection kernel

In order to complete a convolution using a kernel, each pixel of the source image
is expanded to a matrix of equal size to the kernel by padding it with its adjacent pix-
els. Each pixel of the resulting “convolved” image is defined by the summation of the
element-wise product of the kernel matrix and the expanded pixel matrix at that posi-
tion. The identity kernel will not alter the source image, as each pixel is multiplied by 1
and unaltered by the surrounding pixels that are multiplied by 0. The edge detection
kernel essentially assigns a numerical value to each pixel location in the output image
based on how different the source image pixel at that location is relative to the pixels
around it.

The general expression for each pixel of the convolved image with respect to an
original image of size (z, y) and a 3x3 kernel is

g(z,y) = w(z,y) * f(z,y) = Z Z w(2+4 Az, 2+ Ay) f(z + Az, y + Ay)

Az=—1Ay=-1

where f(z,y) is the source image, g(x,y) is the convolved image, and w(z,y) is the
kernel matrix.

l bl

Figure 3. Image of Prague Figure 4. Convolved image
using 3x3 edge detection kernel

Convolutions are computationally intensive calculations. The high resolution of
modern images means that image matrices often have dimensions of more than 4,000
x 3,000 pixels, with an overall pixel count of over 12,000,000. Convolution calculations
themselves are quite simple, but when twelve million discrete matrix multiplications
are required, processing speed becomes an inhibiting factor to image processing. As
such, convolution time is a significant barrier to efficient CNN training, because thou-
sands of images must be processed to train the network before it sufficiently learns
to recognize elements of images. In order to realize the full potential of computer
vision Al, the optimization of image processing and other complex neural network al-
gorithms is of critical importance. Consider autonomous driving, for example, during
which images of the environment surrounding the vehicle must be processed in mil-
liseconds in order to trigger steering, braking and evasive manoeuvrers. Fortunately,
there are methods to significantly streamline convolution calculations. The mathemati-
cal theory underlying these optimization techniques will be presented in the following
subsections.

3.2 Fourier Transformation

The Fourier Transform (FT) is an advanced calculus technique first employed by French
mathematician Joseph Fourier in the early 1800s to translate signal information from
the time domain into the frequency domain [14]. While studying the composition of
advanced functions, Fourier developed the Fourier transform as a way to decompose
these functions into an infinite sum of harmonic functions (such as sine or cosine). The
concept can be most easily understood using an example of a sound wave made up of
several different tones, or frequencies, such as a chord played on a piano. The output
sound wave of the chord is the addition of the waves of each individual note played.
In the diagram in Figure 5, the red sound wave depicts a chord that is the combination
of the three purple component waves that represent each individual note within the
chord [11]. While a listener might be able to recognize a chord as a whole, identifying

the individual notes that make up the composite sound wave (even with a graph of the
wave in the time domain) is relatively difficult.

/ frequency

time

Figure 5. Visualisation of Fourier signal transformation [11]

The Fourier transform provides a way to perform such a calculation on the input
sound wave and decompose it into the component waves of the individual notes mak-
ing up the overall sound. The Fourier transform can be expressed as follows:

F(k) = / Fl@)e= 2 gy

f(z) is the input function and & is the output frequency.

In the example diagram above, the blue frequency function represents F'(k), the
output of the Fourier transform. As k increases in the frequency domain, for each
value k that matches a component note frequency in the time domain, the value of
the Fourier transform, F'(k), equals the amplitude or strength of the individual note
having frequency k.

Evaluating the Fourier transform to obtain the desired frequency function output
requires some manipulation of the integral using Euler’s formula, which states that

e = cos +isinf.
Euler’s formula can be proven numerous different ways, for instance by using Taylor

series for the exponential function e”, the cosine function cosx and the sine function
sinz [5]:

i _ 11 2 xd xt b a8 At
e I TR TR A T
1'2 .T4 $6 $3 .ZUS .T7
(-Gt)iyt

—=cosSx +1¢sinx.

Euler’s formula can be substituted into the F'(k) formula by replacing e~*™** with
cos(—2mkx) + isin(—27nkx). The output of the new Fourier transform has a real com-
ponent, Fr(k), and an imaginary component, F;(k), and the magnitude of the output
frequency wave is equal to \/Fr(k)% + F;(k)2.

For image processing purposes, Fourier transforms must be implemented in their
discrete form rather than the continuous form presented above. Further, since com-
puters represent images in two-dimensional matrices, transforming an image into the
frequency domain requires the transform calculation to be applied in two dimensions:
once over each of the rows and then again for each of the columns. When applied to
images, the Fourier transform separates the image into the component frequencies that
can be used to construct the original pixel values in the space dimension [2]. Fourier-
transformed images do not resemble their source images but maintain all image infor-
mation. In fact, the original image can be restored from the Fourier transformed image
in the frequency domain with the Inverse Fourier Transform (IFT):

Figure 6. Image transformation into and out of the frequency domain

The formula for calculating a discrete 2D Fourier transform on an image of size
(M, N) is as follows, where each pixel of the output image is represented by F'(u, v):

M—-1N-1

=Y ey

z=0 y=0
The two-dimensional Fourier transform can be decomposed into individual one-dimensional
Fourier transforms by manipulating the formula as follows:

M-1N-1

Z Zf l’ y —2mi(5%) —27ri(y—1\}’))

=0 y=0
Now, notice that e=2"(37) is a constant with respect to y and can be removed from the

inner summation:
M—1

N—-1
6—271'1(w) Z f(a:,y)e_Zm(yT\?))

=0 y=0

The resulting expression demonstrates that the two-dimensional transform is equiva-
lent to executing the one-dimensional transform for each column of the input matrix,
and then again for each row of the input matrix [1].

5

3.3 Convolution Theorem

Critical to the optimization of convolutional neural networks presented in the next
section is the Convolution Theorem, which combines the concepts of convolution and
Fourier transformation. The Convolution Theorem states that the convolution of two
matrices can alternatively be calculated by element-wise multiplication in the frequency
domain. In other words, matrices can be convolved by taking the Fourier transform
of each matrix, multiplying them together element by element, and then applying the
inverse Fourier transform to the result:

The Convolution Theorem
wx f=F'F(w)F(f)].

Proof. Let z and y be vectors with convolution vector z = z * y. The discrete Fourier
transform 7, of z is

Zp = Z Zn6727rikn _ Z(m X y)nefQﬂ'ikn _ Z (Z mmynfm> 6727rikn)

n n

Further, reverse the order of summation and extract the constant from the inside sum:

Zp = Z T (Z yn_me’M’“”) .

m

Now, multiply by e=?7#*™ = 1 to align the index for the inside summation:

7 = Z xme_kam (Z yn_me—Qﬂik(n—m)>)

The inside sum is the Fourier transform of y, which we will call Y. Note that Y is a
constant with respect to m, and the outside sum is the Fourier transform of x, which
we will call X. Thus,

Z = Y3, Xk .

This equation tells us that each individual element of the Fourier-transformed convo-
lution vector is equivalent to the product of the corresponding elements of the original
vectors in the frequency domain.

Finally, taking the inverse Fourier transform of both sides proves that

zxy=z=F'(YX)=F ' (F(y)F(z)). O

The convolution of x and y is equal to the inverse Fourier transform of the vector
produced by multiplying each corresponding element of their Fourier transforms [10].
Therefore, the convolution of two vectors can be calculated through three Fourier
transforms (or, rather, two Fourier transforms and one inverse transform) instead of
calculating the convolution directly. This fact is pivotal for the optimization of convo-
lution, because, as will be discussed in the following section, there are significant ineffi-
ciencies to be leveraged in Fourier transform calculations. At this point, no efficiencies
have been achieved due to that fact that the number of calculations required for both
a convolution and a Fourier transform are on the order of N? for an N-dimensional
square matrix.

4 Optimization Methodology

4.1 Fast Fourier Transforms

Fast Fourier Transforms (FFTs) were designed to exploit redundancies in Fourier trans-
form calculations and allow for Fourier transforms to be calculated in a reduced num-
ber of operations (and, as a result, in much less processing time by computers). For
ease of understanding, the following steps will outline the derivation of the discrete
FFT in one dimension [9].

The 1D discrete Fourier transform X of any vector x = (zo, ..., zy_1) has coordi-

nates
N-1
—i27
X, = E Tpe N
n=0

Populating the resultant vector X = {X}} requires evaluation for NV values of k, and
in turn a total of N? multiplications. Now, by letting M = N/2 and substituting for N,
the above formula can be expressed as

2M—-1

Xk = E l‘ (& _foﬂ kn
n=0

Next, splitting the summation into its even and odd numbered terms produces

X, = Sark2n Stk (2n+1)

k Zane + $2n+1€
Factoring the second term and simplifying the exponents leaves us with
M-1 M-1
—1i27 kn —1i27 kn —1i27 k)
X, = E Tope M T 4 E Topt1€ M "e2M

Now, realizing that the main terms are simply the Fourier transforms of the even and
odd elements of the original vector, X}, can be further simplified as

Xk Xeven 4 XOdde 21\1 Tk) (1)

And finally, using the facts that

—i27 —i27 —i27
e i (k+M)n — o i kn —i2mn __ —e M knln — o kn7
we see that
Xgie]& — Xeven and X;ﬁ%\/f — Xodd’
SO
—i27 —i27 . —i27 —i27
eanr KHM) _ o557 ko= — o 50r k(_l) — —_eam k.

We can write the following by substituting k£ + M in for £ in (1) and find
Xk+M — ngen o dede%k . (2)

Transforming the original one-dimensional vector can thus be broken into two tasks.
Each element in the first half of the vector can be calculated with two Fourier transfor-
mations of length N/2 by equation (1). For the second half of the vector, however, the
transforms computed for the first half can be reused according to equation (2). Even
better, the process is recursive, because the first half of the vector can be split into
two segments for further optimization. Thus, while a standard Fourier transform for a
vector of N elements requires a number of computations proportional to N?, the FFT
reduces the requirement to the order of Nlog,N, a powerful reduction in processing
time that actually grows in efficiency as the image size, /N increases.

10000
8000
6000
4000

2000

0 500 1000

Figure 7. Number of computations required to execute algorithm of order N? (red)
versus N log, N (blue)

Naturally, the Fast Fourier Transform can be applied in the context of convolution by
the Convolution Theorem. As such, modern computers can calculate convolutions
using 3 FFTs and one element-wise matrix multiplication, which for large N can reduce
processing speeds by greater than 90% [10].

N

B W

4.2 Experimental Validation

The efficiency of FFT-based convolution can be observed experimentally. To demon-
strate the power of these mathematics, images of various resolutions were convolved
with a 5x5 edge detection kernel (Figure 8) both with traditional, two-dimensional
convolution and using SciPy’s FFT/IFFT algorithms in python [12]. A code fragment
is also attached below in Figure 9.

0O 0 -1 0 O
0 -1 -2 -1 0
-1 -2 16 -2 -1
0 -1 -2 -1 0
0 0 -1 0 O

Figure 8. A 5x5 edge detection kernel

Kernel
kernel = np.array([[-1,-1,-1], [-1, 8,-11, [-1,-1,-111)

Traditional convolution

5 start = time.time ()
» output = twodconvolve (image, kernel, padding=2)
print ("2D Convolution Time:", time.time() - start, "ms")

g

cv2.imwrite (' Convoluted. jpg’ , output)

FFT-based convolution

11 = tf.shape (image) [0]

12 tf.shape (image) [1]

start = time.time ()

im_fft = tf.signal.rfft2d(image, fft_length=[11,12])

5 kernel fft = tf.signal.rfft2d(kernel, fft_length=[11,12])
» im_convolved = np.array(tf.signal.irfft2d(im_fft = kernel fft, [11,12]))

print ("FFT Convolution Time:", time.time() - start, "ms")
cv2.imwrite (' FFTConvoluted. jpg’, im_convolved)

Figure 9. Python code to calculate and time traditional and FFT-based two-dimensional
discrete convolution.

While the different techniques produced identical matrices, the frequency-domain
convolution generated the final image faster by leveraging the efficiency of FFT in both
cases. Also note that FFT yielded larger efficiency gains in convolving the larger image.

(b) (c)

Figure 10.

(a) Original image of dimensions 500500 pixels
(b) Traditionally convolved image computed in 0.942 seconds
(c) FFT-convolved image computed in 0.193 seconds

(a) (b) (c)

Figure 11.

(a) Original image of dimensions 1000x1000 pixels
(b) Traditionally convolved image computed in 5.424 seconds
(c) FFTI-convolved image computed in 0.770 seconds

10

5 Conclusion

The optimization of machine learning discussed in this paper through the theoretical
lens of mathematics illustrates the ability of mathematics to transcend time and fields
of study. Even the Fast Fourier Transform, which was developed in 1965, predates
the rise of computer science and machine learning [14]. Today, FFT is hailed as one
of the greatest mathematical algorithms of the twentieth century for its extensive ap-
plications for tasks like audio, image, and video processing [7]. This paper has both
theoretically and experimentally proven that image convolution can be substantially
optimized with FFT according to the Convolution Theorem and thus supports the in-
tegration of an FFT layer into convolutional neural networks. The simulations con-
ducted in Section 4 indicate that FFT-based convolution can accelerate image filtering
by incredible margins, and that these efficiency gains increase for larger kernel and im-
age sizes. These results are a testament to the power of FFT and to the tangible value of
seemingly abstract mathematical discovery, and the ubiquitous applications of convo-
lutional neural networks for solving computer vision problems in diverse fields make
this research critical to the technological transformation of modern society.

References

[1] E. Agu, Digital Image Processing (CS/ECE 545)
Lecture 10: Discrete Fourier Transform (DFT),
https://web.cs.wpi.edu/ emmanuel/courses/cs545/514/slides/lecturel0.pdf,

last accessed on 2022-03-28.

[2] R. Fisher, S. Perkins, A. Walker and E. Wolfart, Hypermedia Image Processing
Reference (HIPR), John Wiley & Sons Ltd., Chichester, 1997.

[3] K. Gerding, Image kernels, Medium, 8 June 2016,
https://medium.com/@kgerding/image—-kernels—-2£8a36087b75,
last accessed on 2022-03-28.

[4] A.C.Gilbert, P.Indyk, M. Iwen and L. Schmidt, Recent developments in the sparse
Fourier transform: A compressed Fourier transform for big data, IEEE Signal Pro-
cessing Magazine 31 (2014), 91-100.

[5] O.Hansha, Understanding Euler’s Formula, Medium, 28 November 2017,

https://ozanerhansha.medium.com/understanding-eulers—formula-888e5f58£f559,

last accessed on 2022-03-28.

[6] D.H. Hubel and T.N. Wiesel, Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex, The Journal of Physiology 160(1) (1962), 106—
154.

11

https://web.cs.wpi.edu/ emmanuel/courses/cs545/S14/slides/lecture10.pdf
https://medium.com/@kgerding/image-kernels-2f8a36087b75
https://ozanerhansha.medium.com/understanding-eulers-formula-888e5f58f559

[7] H. Knight, Leaner Fourier transforms, MIT News, 11 December 2013,
https://news.mit.edu/2013/leaner-fourier-transforms-1211,

last accessed on 2022-03-28.

[8] Lancashire Wallpaper & Paint Co., Cosmos-solar-system-668100, 2017,

https://lancashirewallpaper.co.uk/products/cosmos-space-wallpaper-668100,

last accessed on 2022-03-28.

[9] D. Marshall, The Fast Fourier Transform Algorithm,
https://users.cs.cf.ac.uk/Dave.Marshall/Vision lecture/node20.html,

last accessed on 2022-03-28.

[10] V. Nair, M. Chatterjee, N. Tavakoli, A.S. Namin and C. Snoeyink,
Fast Fourier transformation for optimizing convolutional neural networks in ob-
ject recognition, https://arxiv.org/abs/2010.04257v1,
last accessed on 2022-03-28.

[11] NTi Audio, Let’s Clear Up Some Things About FFT...— Part 1 of 2: The Basics,
https://www.nti-audio.com/en/news/lets-clear-up-some-things—-about-fft-part-1,

last accessed on 2022-03-28.

[12] SciPy, Legacy discrete Fourier transforms,

https://docs.scipy.org/doc/scipy/reference/fftpack.html,
last accessed on 2022-03-28.

[13] X. Tang, J. Peng, B. Zhong, J. Li and Z. Yan, Introducing frequency representa-
tion into convolution neural networks for medical image segmentation via twin-
kernel Fourier convolution, Computer Methods and Programs in Biomedicine 205
(2021), 106110.

[14] R. Thummalapalli, Fourier transform: Nature’s way of analyzing data,
Yale Scientific, 1 December 2020, https://www.yalescientific.org/2010/12/
fourier—-transform-natures-way-of-analyzing-data/,

last accessed on 2022-03-28.

12

https://news.mit.edu/2013/leaner-fourier-transforms-1211
https://lancashirewallpaper.co.uk/products/cosmos-space-wallpaper-668100?variant=15948415238187
https://users.cs.cf.ac.uk/Dave.Marshall/Vision lecture/node20.html
https://arxiv.org/abs/2010.04257v1
https://www.nti-audio.com/en/news/lets-clear-up-some-things-about-fft-part-1
https://docs.scipy.org/doc/scipy/reference/fftpack.html
https://www.yalescientific.org/2010/12/fourier-transform-natures-way-of-analyzing-data/
https://www.yalescientific.org/2010/12/fourier-transform-natures-way-of-analyzing-data/

	Abstract
	Introduction
	Theoretical Background
	Two-Dimensional Convolution
	Fourier Transformation
	Convolution Theorem

	Optimization Methodology
	Fast Fourier Transforms
	Experimental Validation

	Conclusion

