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Simplifying difficult problems using
dimensional analysis

Vedanth Nandivada1

1 Introduction

“In Physics there is no place for muddled thinking. Those who really understand the nature of
a given phenomenon must obtain the basic laws from dimensional considerations.”

–Enrico Fermi

Dimensional analysis is a study of relationships between physical quantities expressed
in terms of their fundamental units. The seven fundamental units include meters, sec-
onds, moles, candelas, kelvin, ampere, and kilograms. The fundamental dimensions
for these units are as follows: length, time, amount of substance, luminous intensity,
temperature, electric current, and mass. Physical laws do not vary with respect to ar-
bitrarily selected fundamental units of measurement. Take for example the equation
F = ma. As mentioned by Jean-Baptiste Joseph Fourier in 1822 [1], the equation is
independent of the units chosen for F , m and a. This is to say that, regardless of which
units are chosen for F , m, and a, force will always be equal to mass times accelera-
tion due to gravity. Mass could be in kg or in grams; acceleration can be in m/s2 or
N/kg; and yet, the equation will not change as F will still be equal to ma. This is
often referred to as dimensional homogeneity, which is the idea that the dimensions
are the same on both sides of an equation, regardless of the units used. Dimensional
analysis is the exploitation of this homogeneity. In history, numerous authors, such
as Osborne Reynolds (1842–1912), James Clerk Maxwell (1831–1879) and Edgar Buck-
ingham (1867–1940), were all associated with, and contributed to the advancement of
dimension analysis [2]. Ain A. Sonin explains how dimensional analysis can help de-
signing experiments by reducing the number of variables in a problem [3]. John May-
nard Smith applied principles of dimensional analysis in mathematical biology [4].
Historic evidence points to the fact that several great applied mathematicians gained
crucial insights into difficult problems with dimensional analysis.

In this expository article, we show that dimensional analysis can be a powerful yet
simple method for solving difficult problems. Our aim is to promote the use of dimen-
sional analysis in problem solving and attempt to clear the air of any mist surrounding
dimensional analysis.

1Vedanth Nandivada is a Grade XI student at TISB, Bangalore, India
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2 Two Problems

Consider the following two well-known problems in elementary physics. We compare
the classical text book methodology to solve these problems with the approach and
conclusions of dimensional analysis. We hope that you might be pleasantly surprised
by the simple effectiveness of the latter.

Problem 1: Given the length ℓ and mass m of a simple pendulum, find the formula for
the time period T of a simple pendulum; see Figure 1.

θ ℓ

g

Figure 1: Finding the formula for time period of a pendulum.

Classical solution

Newton’s Laws
+ ordinary differential equation

Solution:

T = 2π

√
ℓ

g

Dimensional analysis solution

Dimensional analysis principles
+ armchair experiment

Conclusion:

T√
ℓ
g

= C

where C is found by experiment.
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Problem 2: Given the length ℓ and diameter D of a cylinder and a fluid of density ρ
and viscosity µ flowing over the cylinder at velocity v, find the drag force F on the
cylinder by the flowing fluid; see Figure 2.

Figure 2: Drag force per unit length [6]

Classical solution

Classical calculations are possible for
inviscid flow. For viscous fluids,
the flow patterns are tough to de-
termine even for laminar flows, and
very tough for turbulent flows.

Solution: ?? None in closed form.

Dimensional analysis solution

Dimensional analysis principles
+ armchair experiment

Conclusion:

F

ℓρv2D
= f

(vDρ

µ

)
where f is found by experiment.

We hope that the conclusions of dimensional analysis will appear startling and like
a “rabbit out of the hat’’ breakthrough to the problem. In both cases, we can proceed
further via efficient experimentation to give accurate practical solutions. How does
dimensional analysis work out this sleight of hand magic? We proceed to explain the
science and mathematics of this trick to the uninitiated. A detailed discussion of these
two examples will suffice.
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2.1 Solving Problem 1 by dimensional analysis

The formula for the dependence of the time period on the length of the pendulum has

been a classical problem for generations. The formula T = 2π
√

ℓ
g

is derived using
Newton’s laws and solving a differential equation. What if we were to show you a
way to derive this formula without any complex mathematics and just an armchair
experiment? This is where dimensional analysis comes in. The steps of dimensional
analysis are as follows.

Algorithm to exploit dimensional analysis

Step 1: Guess the variables that affect the time period.
This step requires some inspiration as it requires one to think carefully about the possi-
ble variables that can affect the time taken for one oscillation. This is the step that could
make or break the analysis. If the final conclusion of dimensional analysis is incorrect,
then one can be sure that this first step was the single source of the error. Here, we
guess that the variables that affect the time period T of the pendulum are the length ℓ
of the pendulum, the mass m of the bob, and the acceleration g due to gravity. Our aim
is to find the function f below:

T = f(ℓ,m, g) . (1)

Step 2: Recast the above equation to make the left-hand side dimensionless.
The left-hand side of (1) must be made dimensionless using variables from the function
on the right-hand side of (1), namely ℓ, m, and g. Divide both sides by

√
ℓ/g which,

like T , has seconds as units, to make the left-hand side dimensionless:

T√
ℓ/g

= f ∗(ℓ,m, g) where f ∗(ℓ,m, g) =
f(ℓ,m, g)√

ℓ/g
.

Since the left-hand side is dimensionless, then so is the function f ∗(ℓ,m, g).

Step 3: Apply the principles of dimensional analysis via armchair experiments.
Each such experiment will reduce the number of variables by one. For the first ex-
periment, imagine that the function f ∗ is known to a group of mathematicians. All of
the mathematicians use the same units for length ℓ and time t but some mathemati-
cians use the unit of mass as kg and the rest in grams. The mathematicians are told to
calculate

T ∗ :=
T√
ℓ/g

= f ∗(ℓ,m, g) .

Now all of the mathematicians must get the same number for T ∗ since it is dimen-
sionless and therefore cannot depend on the particular unit used for the mass m. The
calculated values for f ∗ therefore also don’t depend on the unit used for the mass.
Since different units are used by the mathematicians, the function f ∗ cannot depend
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on m. We can therefore write

T ∗ =
T√
ℓ/g

= f ∗(ℓ, g) . (2)

Thus, this armchair experiment uses the principle of dimensional analysis to eliminate
mass as one of the variables of f ∗.

Now, imagine that all of the mathematicians use the same units for length ℓ but
some mathematicians use different units for time t. As above, this will give varying
values of g for the two groups of mathematicians but the value of T ∗ calculated by the
group will be the same for all of the mathematicians, since T ∗ is dimensionless. We
conclude that f ∗ cannot depend on g and it follows that

T ∗ = f ∗(ℓ) .

Thus, the experiment uses dimensional analysis to eliminate g as a variable of f ∗.
Finally, imagine that some of the mathematicians are told to take the unit of length

as meters and the rest as cm. This will give varying values of the length ℓ of the pendu-
lum. Since all of the mathematicians arrive at the same value of T ∗ and thus of f ∗(ℓ), it
follows that f ∗(ℓ) does not depend upon the length ℓ. This means that

T ∗ =
T√
ℓ/g

= c

for some (yet unknown) constant; that is,

T = c

√
ℓ

g
. (3)

Step 4: Perform a (real) experiment to find the value of c in the expression above.

All we did to arrive at our solution to Problem 1 was to use the principle of dimen-
sional analysis and determine the consequence of a sequence of armchair experiments.
This led to a spectacular simplification of the problem.

Please note that the sequence of armchair experiments was carried out in a way
such that only one independent variable varied in each experiment. For a more de-
tailed discussion, see Barenblatt’s book [6].

Numerical example

Question: What is the ratio of the time period of a 1m long pendulum on the moon to
that on the earth?
Solution:

Tmoon

Tearth

=

√
ℓ

gmoon√
ℓ

gearth

=

√
gearth
gmoon

=

√
9.81

1.63
∼ 2.5 .
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2.2 Solving Problem 2 by dimensional analysis

Problem 2 is significantly more difficult than Problem 1 and the dimensional analysis
will now require an additional clever manipulation of the variables as compared with
the analysis in Problem 1. The main purpose of this section is to explain this additional
manipulation of the independent variables.

Algorithm to exploit dimensional analysis

Step 1: Guess the variables that affect the drag force per unit height.
This step is the same as the first step for solving Problem 1. We guess that the variables
that affect the drag force per unit height F

ℓ
are the velocity v of the cylinder moving

in the medium, the diameter D of the cylinder, the density ρ of the fluid, and the vis-
cosity µ of the fluid. That is, we guess the independent variables determine F

ℓ
as some

function f(v,D, ρ, µ):
F

ℓ
= f(v,D, ρ, µ) . (4)

Step 2: Make the left side of (4) dimensionless by using variables from the right side.
In order to do this, divide both sides of the equation by v2Dρ:

Π :=
F

ℓv2Dρ
=

f(v,D, ρ, µ)

v2Dρ
.

It is easy to verify that the left side of the above equation, here called Π, is dimension-
less. The right side of the equation can thus be expressed as some function f ∗(v,D, ρ, µ).

Step 3: Introduce the variable Re = vDρ
µ

.
This step is the new clever manipulation. Note that Re is dimensionless. It is known in
literature as the Reynolds number. Since µ = vDρ/Re, the viscosity depends on the vari-
ables v, D, ρ and Re. We can therefore view f ∗(v,D, ρ, µ) and thus f ∗(v,D, ρ, µ)/(v2Dρ)
as a function f ∗∗ of those four variables:

Π =
f(v,D, ρ, µ)

v2Dρ
= f ∗∗(v,D, ρ,Re) . (5)

Our objective in this problem is to find f ∗∗.

Step 4: Perform armchair experiments exactly as in Problem 1.
The expression (5) is used by a group of mathematicians, all of whom use the same unit
of length and time but a different unit for mass. Some mathematicians are told to use
kg as the unit of mass and the others are told to use grams. The value of ρ thereby used
by the mathematicians will thereby differ. In contrast, the entire group will get the
same answer for Π because it is dimensionless. Therefore, all of the mathematicians
will calculate the same value for f ∗∗(v,D, ρ,Re) even though their values of ρ differ.
We conclude that the function f ∗∗ does not depend on ρ. We express this as follows:

Π = f ∗∗(v,D,Re) .
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Now, some mathematicians are told to take the unit of time as seconds and others as
minutes. This will give varying values of v but constant values of D and Re. Since the
calculated values of Π = f ∗∗(v,D,Re) are also constant, we conclude that f ∗∗ does not
depend on v, and we can write

Π = f ∗∗(D,Re) .

Finally, some mathematicians are told to use meters as the unit of length and others
are told to use cm. This will give varying values of D, the diameter of the cylinder, but
the calculated values of Π = f ∗∗(D,Re) will still all be the same. Therefore, f ∗∗(D,Re)
does not depend on D:

Π =
F

ℓv2Dρ
= f ∗∗(Re) .

Step 5: Perform (real) experiments to determine f ∗∗ experimentally.
The experiments have a single variable (Re), reduced from four variables by dimen-
sional analysis. Assuming that one would take 10 experiments per variable of the
function f ∗∗ for calculating the value of Π, the number of experiments have reduced
from around 104 to just 101 = 10 experiments.

Let us pause and highlight the power of dimensional analysis. It is truly remark-
able. We have been able to solve a problem which could not have been solved by
normal calculations. We can determine the dependence of Π on a single variable Re
through experiments and present these results as a graph. With this graph, we can de-
termine the drag force of a cylinder of any diameter, any length and flowing through
any fluid with any velocity. The results are reliable for turbulent flow too. The graph
for Π = f ∗∗ has been obtained by experimentalists; for instance, see the graph in Fig-
ure 3 below, reproduced from [7]. It shows Π as a function of Re.

Re

Π

Figure 3: Π as a function of Re [7]
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Numerical example

We illustrate the use of the above graph with a numerical example.

Question: Find the drag force on a cylinder of length ℓ = 2m and diameter D = 0.2m
by air flowing over it with velocity v = 12m/s.
Data:

ℓ = 2m
D = 0.2m
ρ = 1.2kg/m3

µ = 1.81× 10−5Pa/s
v = 12m/s

Solution:
Step 1: Calculate

Re =
vDρ

µ
=

12× 0.2× 1.2

1.81× 10−5
∼ 1.7× 105 .

Step 2: Use the value calculated above, refer to the graph, and find that Π ∼ 1. We
can now use this value of Π to calculate the drag force. From the above section, we
determined that Π is equal to F

ℓv2Dρ
. Therefore,

F = ℓv2DρΠ = 2× 122 × 0.2× 1.2× 1N ∼ 69N .

3 Similarity and scaling

It is very useful in design to build and study smaller prototypes of large scale objects.
It is even more useful if experimental studies on these prototypes can be used to pre-
dict the results for the larger objects accurately. This is possible through the idea of
similarity and scaling. This idea follows easily from dimensional analysis. Two ob-
jects are called similar if they differ only in dimensional quantities but the associated
dimensionless parameters are identical.

Consider the following equation from the previous section:

Π =
F

ℓv2Dρ
= f ∗∗(Re) .

Here, both Π and Re are dimensionless and Π is a function of Re as shown in Figure 3.
Consider a scenario where we are investigating the drag force of a very corrosive

and harmful industrial fluid on a cylinder. We are not keen on conducting such exper-
iments in a laboratory. Instead, we use the idea of similarity. We focus on the Reynolds
number of the desired experimental study and calculate the required value of vDρ

µ
. We

prefer working with a more benign fluid and so we change ρ and µ. But, we can still
design the experiment to obtain the same Reynolds number by appropriately changing
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the values of v and D in our prototype experiment. The results of our experiment can
easily be used for the actual model because we have ensured the same value of Re, the
independent variable. We determine the value of Π with our laboratory experiment:

Π =
F

ℓv2Dρ
= f ∗∗(Re) .

The value of Π of the actual design is then known and we can proceed to calculate the
force per unit height accurately.

For a more intricate model we can have equations of the form

Π = f ∗∗
1 (Π1,Π2,Π3) .

To obtain reliable values for the dependent variables, Π, we design experiments to
obtain the same values of the independent variables Π1, Π2, Π3, as required in the
actual design. Thus, dimensional analysis enables scaling through the simple idea of
similar dimensionless variables.

Numerical example

Question: Suppose that we investigate the flow of corrosive mercury over a cylinder.
Can we instead perform the experiments with water and predict the results for the
flow of mercury?

Data:

νmercury :=
µmercury

ρmercury
= 1× 107

νwater :=
µwater

ρwater
= 1× 106 .

Solution: Our objective can be easily achieved if our value of Π1 is same for the design
requirement as for the prototype. We propose to use water for the experiment; then

νwaterD = 10 νmercuryD .

This ensures that the value of Re is the same for the requirement and the prototype.

4 Limitations of dimensional analysis

We would like to point out that in both dimensional analysis solutions, the final step
was experimentation. This is clearly a limitation of dimensional analysis as we can only
get the complete solution of the problem by performing a (real) experiment. Also, the
whole analysis can be flawed if the first guess of identifying the variables is incorrect.
Making accurate guesses for the reliable dependent variables is an art, so dimensional
analysis is a powerful tool made even more so by the experts.
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