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The beauty of the Golden Ratio
Thomas Britz1

Introduction

The Golden Ratio in sunflowers,
sort of

Photo by L. Shyamal, used under Creative Com-

mons cc-by-sa-2.5.

The Golden Ratio φ is one of the numbers
most revered by non-mathematicians. According
to widespread belief, the Golden Ratio appears
prevalently in nature. Many people also believe
that φ determines beauty in art, architecture and
faces, either due to psychology or more mystical
means. As I explained in a recent article [3], these
beliefs are false. The Golden Ratio does sometimes
appear in nature, such as in some spiralling pat-
terns of some nuts and flowers. However, this is
approximate and relatively rare. As for the claim
that the Golden Ratio determines Beauty in art and
faces, there is no evidence for this, and much evi-
dence against it.

Nevertheless, it is true that φ is both prevalent
and beauty-inducing, just not in nature or art. The
Golden Ratio appears surprisingly often, in surprisingly beautiful ways – in maths.
This note showcases a few of these surprising and beautiful ways.

The Pythagoreans and the Golden Ratio

As far as we know, the Golden Ratio, or Divine Proportion as it is also sometimes called,
was first discovered by the Pythagoreans, roughly 2400 years ago. They were a cult
of mathematicians who discovered many mathematical truths, including Pythagoras’
famous theorem. Some of these truths arose from empirical observations involving
natural numbers and their ratios, such as musical harmonics appearing in ratios 1:2 or
2:3. Other truths were derived conceptually, especially via geometry. To the Pythagore-
ans, the ubiquity of whole numbers and whole number ratios in nature suggested that
these had numerological, philosophical and even ethical significance. As the symbol
of their cult, they chose the pentagram which to them, with its five-fold symmetries,
symbolised balance and health.

1Thomas Britz is Editor of Parabola and Senior Lecturer at UNSW Sydney.
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The pentagram is mathematically fascinating, not least since
a curious ratio keeps appearing when you study this symbol. In
the pentagram to the right, the four thick black line segments
grow in length by a fixed ratio φ at each step. For instance, the
long thick horizontal line is φ longer than the side length of the
pentagram. This constant φ is indeed the Golden Ratio

φ =
1 +

√
5

2
≈ 1.618 .2

This is an irrational number, not a ratio of natural numbers. When the Pythagorean
Hippasus discovered irrational numbers, the Pythagoreans suffered a crisis of reality3.
They believed that you can only divide matter and magnitude a finite number of times
until you get atoms. These are the indivisible units of reality that all existence is made
out of. If one line length consists of p “line length atoms” and another line length
consists of q such atoms, then the ratio between these two lengths is p/q, a rational
number. Irrational numbers such as

√
2 and φ proved that not everything is built of

atoms; some things are infinitely divisible. To the Pythagoreans, this realisation pulled
a rug of certainty from under their feet, revealing below an abyss of infinity.

Surprising and beautiful instances of the Golden Ratio

To be honest, I would not blame you, dear Reader, if the expression (1 +
√
5)/2 left

you indifferent. It does not look particularly interesting or nice to me either. However,
it is possible to express φ in other ways, some of which you might find surprising or
beautiful. For instance, you can quickly check that the Golden Ratio φ is the positive
solution to the simple equation

x2 = x+ 1 .

Therefore, the Golden Ratio can be expressed as the infinitely nested square roots

φ =

√
1 +

√
1 +

√
1 + · · · .

It can also be expressed as the continuing fraction

φ = 1 +
1

1 +
1

1 +
1

1 + · · ·

.

Remarkably, its inverse, roughly 0.618, can be expressed in nearly the same way:
1

φ
= φ− 1 =

1

1 +
1

1 +
1

1 + · · ·

.

2Can you prove this?
3and, according to your legend of choice, they either killed or exiled poor Hippasus.
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The Golden Ratio and Fibonacci numbers

The Golden Ratio φ is intimated related to other famous and popular numbers, the
Fibonacci numbers. As you might already know, these are the numbers

0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , . . .

that you get by starting with 0 and 1 and adding consecutive pairs of numbers to get
the next; for instance, 0 + 1 = 1; 1 + 1 = 2; 1 + 2 = 3; 2 + 3 = 5; and so on. The Golden
Ratio is the speed at which these numbers eventually grow. More precisely, the ratio
between any two consecutive Fibonacci numbers Fn−1 and Fn tends towards φ as n
grows large: For instance,

F2/F1 = 1/1 = 1
F3/F2 = 2/1 = 2
F4/F3 = 3/2 = 1.5
F5/F4 = 5/3 ≈ 1.667
F6/F5 = 8/5 = 1.6
F7/F6 = 13/8 = 1.625
F8/F7 = 21/13 ≈ 1.615

and so on. In other words, the Golden Ratio φ is determined by the Fibonacci numbers
via the identity

φ = lim
n→∞

Fn

Fn−1

.

The converse is also true: Fibonacci numbers are also determined by φ, by an identity
called Binet’s Formula [5]:

Fn =
1√
5

(
φn − (−φ)−n

)
.

Given that each Fibonacci number Fn is a whole number, it is beautifully surprising
that it can be expressed like this in terms of the irrational Golden Ratio φ like this.
Indeed, since the term (−φ)−n quickly grows very small, we can express all Fibonacci
numbers Fn for all n simply as

Fn =

[
φn

√
5

]
.

Here, the square brackets mean that φn
√
5

is rounded to its nearest integer.
The Fibonacci numbers are determined by the recursive identity

Fn = Fn−1 + Fn−2

and the powers of the Golden Ratio are determined similarly:

φn = φn−1 + φn−2 . (1)

This identity follows by multiplying both sides of the equation φ2 = φ + 1 by φn−2.
Here, n can be any real number.

3



20 geometrical instances of the Golden Ratio

It is possibly in geometry that the Golden Ratio is most popular and celebrated. The
Golden Ratio seems to hide nearly everywhere in geometry and the hunt for φ among
geometric shapes is very popular. Maybe you would like to join this hunt too?

In this section, I present 20 of these geometric instances of the Golden Ratio but
there are countless others. I present only the instances of φ but leave the underlying
proofs and derivations for you, dear Reader, to fill in as a hopefully fun challenge.

The first geometrical instance of the Golden Ratio follows eas-
ily from the algebraic expression for φ. Stack two squares of the
same size on top of each other and place them inside a circle.
Now extend each square horizontally to the edge of the circle to
form two rectangles. The area of each rectangle is φ times larger
than that of each square.

In the following picture by master Golden Ratio finder Tran
Quang Hung [4], place three squares of the same size in a row
inside a circle and draw a circle diameter through two opposite
corners of the middle square. The resulting inner triangles are φ
times larger in area than the outer triangles.

Here is another picture by Tran Quang Hung [4]. Draw a cross
from five squares of the same size inside a circle and draw a big-
ger square inside the circle as well. The eight outer squares and
rectangles have the same area which is φ times smaller than the
area of each of the four inner rectangles. These areas are φ times
smaller than that of the middle square.

This picture extends a geometric figure by the professional
artist and amateur mathematician George P. Odom Jr. [6, 9, 12].
Pack four equal-sided triangles of the same size into one dark-
grey Triforce triangle inside a circle. The area of each dark-grey
triangle is φ times larger than the area of each light-grey triangle
which is φ times larger than the area of each white triangle.
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This simple figure is by Tran Quang Hung [4]. Place two
same-sized circles next to each other and draw a circle around
them. Draw a line through the top of the big circle and the right
circle centre. The distance from the top of the big circle to the
intersection point drawn is φ times the radius of the big circle.

Tran Quang Hung’s picture above is here expanded. This new
picture is not as elegant or pretty but the intersection points be-
tween the line and the four circles give many φ ratios: using the
shortest distance between these points as unit measure, the dis-
tances between the points include 1, φ, φ2, φ3, φ4 and φ5.

The following figure has been adapted from a short
construction of φ by Kurt Hofstetter in 2002 [6]. Place five
circles of the same size in a row and draw circles around
them as drawn to the right. Then the distance from the
bottom small intersection point to the top big intersection
point is φ times the distance between the two small inter-
section points.

This simple and pretty figure is from [10]. Pack six circles of
the same size into two rows of three, and place this grid of circles
inside a bigger circle. The radius of the large circle is φ times
larger than the diameter of the small circles.

This Yin-Yang variation of Tran Quang Hung’s elegant pic-
ture at the top of the page is by John Arioni [4]. Draw lines from
the left-hand side of the symbol through the small circles. The
distances from the left-hand side point to the other two points
are respectively φ and φ−1 times the times radius of the symbol.

John Arioni [4] also gave an elegant picture, here simplified.
The smallest distance from the upper-left corner to a point on
the circle is φ times smaller than the circle diameter, whereas the
largest distance from that corner to a point on the circle is φ times
bigger than the diameter.
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The elegant picture below is by Jerzy Kocik [7] who made it a window of his house.
The radius of the encompassing circle is φ2 larger than that of the left and right circles
which in turn is φ times larger than the diameter of the inner circles which, in turn, is
φ√
5

times smaller than that of the four corner circles. Many other φ ratios appear.

This figure is due to Kadir Altinas [4]. Fit two circles of the
same size and a larger circle into a rectangle with dividing lines
as shown. Then the bigger circle has φ times larger radius than
the two smaller circles.

A nice variation of the above figure was found by Ercole
Suppa [4]. Draw two lines from the midpoint of the left side of
the square to the opposite diagonals, and fit circles into the three
resulting areas. The big circle has φ times larger radius than the
two smaller circles.

This figure is a slight adaptation of another figure due to
Kadir Altinas [4]. The side length of the gray triangle is φ times
larger than the side length of each of the small triangles.
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There are five sizes of triangles in the pentagram. The big
white triangle has area φ larger than the grey triangle to the left.
It in turn has area φ times larger than the darker grey triangle
to the upper-right. That triangle has area φ times larger than the
dark grey triangle to the right. It, finally, it has area φ times larger
than each of the smallest triangles in the pentagram.

In this figure by Tran Quang Hung [4], the distance from the
centre of the circle to the furthest corner of the middle square
is φ times smaller than the distance from the circle centre to the
closest corner.

This pretty figure is from Problem 22 of the 2014 American
Mathematics Competition 10B Problems [1]. The radius of the
middle circle is φ times smaller than the diameter of the semi-
circles.

This is yet another figure by Tran Quang Hung [4]. Here, a
circle is drawn inside an equal-sided triangle. Three lines are
drawn from each corner to points on the circle in such a way that
the lines touch and form a triangle within the circle. The length
of each line is φ times larger the side length of the inner triangle.

Also due to Tran Quang Hung [4], here is a variation of the
figure above. The three lines are drawn from each corner of a
triangle in such a way that they end in the midpoints of the sides
of an inner triangle. The area of each white triangle is φ times
larger than the area of each of the gray triangles.

This picture is inspired by a figure by Tran Quang Hung [4].
As the pentagons shrink inwards, the side length of each pen-
tagon is φ/2 times that of the preceding pentagon.
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Further reading

In this article, I have presented just a few of the many and varied instances of φ
in maths, particularly in geometry. Most of the geometrical figures were re-drawn,
modified or inspired by figures from the extensive list [4] on the fantastic site cut-the-
knot.org by the late Alexander Bogomolny. I have only very briefly addressed the rich
and fascinating history of the Golden Ratio. The excellent book [8] provides a thor-
ough and very readable account of this history. It also gives a clear account of how the
popular urban myths around the Golden Ratio arose and how they persist.

For more fascinating infinite fraction expressions for φ, see the excellent article [11].
To learn more about some of the less-known properties of Fibonacci numbers, see [2].
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