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Solutions 1671–1680
Q1671 As in Problem 1643 and Problem 1663, a Geezer number is a k–digit positive
integer d0d1 · · ·dk−1 in base 10 which consists of d0 zeros, d1 ones and so on. We have
already proved that, in a k–digit Geezer number, the sum of the digits is k; and the
digits d3, d4, . . . , dk−1 include at most one 1, with all the rest of these digits being 0.
Find all Geezer numbers.

SOLUTION Let n be a k–digit Geezer number. Then the sum of the digits in n is also k.
Let the first digit of n be f . Then n contains exactly f zeros and at least one f . There
are another k− f − 1 non–zero digits with sum k− f ; the only way that this is possible
is if one of these digits is 2 and all the rest are 1s. So the digits of n are 0 occurring f
times, 2 occurring once, possibly some 1s, and a digit f which may be another 1 or 2.

• Suppose that f ≥ 3. Then df ≥ 1; from previous results, this means that df = 1
and all other digits d3, d4, . . . are 0. Just one of the digits is 2, so d2 = 1. The digits
d2 and df are 1, so d1 = 2. The digits are 0 occurring f times, 1 occurring twice,
2 occurring once and f occurring once. The sum of digits is f + 4, so f ≤ 6. The
non–zero digits preceding df are d0, d1, d2, so there are f − 3 zeros before df , and 3
zeros afterwards. This gives the Geezer numbers

6210001000 , 521001000 , 42101000 , 3211000 .

• Suppose that f = 2. Then the digits are 0 twice, 2 twice and possibly some 1s. So
n is 2 d12 · · · with d1 = 0 or 1, and we have Geezer numbers

2020 , 21200 .

• Suppose that f = 1. Then we have 0 once, 2 once and some 1s. The only digit
which could be 2 is d1, so our last Geezer number is

1210 .

Q1672 A bag contains 2n balls, two each of n different colours. They are to be drawn
from the bag in a random order and placed in a row. Prove without calculation that
the probability of obtaining a row consisting of pairs of the same colour is the same as
the probability of obtaining a row in which the second half is the same as the first.

SOLUTION Imagine that two people each have a row of empty places numbered
1, 2, . . . , 2n − 1, 2n in which they will write the colours of the balls. A third person
draws balls from the bag one by one and announces the colours as they are drawn.
The first person writes colours into places in the order 1, 2, 3, 4, . . . , 2n− 1, 2n; the sec-
ond does so in the order 1, n + 1, 2, n + 2, . . . , n, 2n. Then the first person will obtain a
row of pairs if and only if the second obtains a row of two identical halves. Therefore,
the probabilities of the two outcomes are the same.
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Q1673 The article by Jonathan Hoseana and Handi Koswara in Parabola Volume 57,
Issue 2 may help with the following problem.

(a) Find a constant α such that the function

αx−
n

∑

i=1

2i
√

x2 +
x

4i
(∗)

has a limit as x → ∞.

(b) If α is the value in (a) and Ln is the corresponding limit (in terms of n), then find
the limit of Ln as n → ∞.

SOLUTION Using the notation of the paper mentioned in the question, we have A =
α2, B = 0 and

ai = (2i)2 = 4i , bi =
(2i)2

4i
= 1

for i = 1, 2, . . . , n. The limit of (∗) exists if

√
A =

n
∑

i=1

√
ai ,

that is, if

α =

n
∑

i=1

2i = 2n+1 − 2 .

In this case, the value of the limit is

Ln =
B

2
√
A

−
n

∑

i=1

bi
2
√
ai

= −
n

∑

i=1

1

2i+1
,

and the limit of Ln as n → ∞ is given by an infinite geometric progression,

lim
n→∞

Ln = −
∞
∑

i=1

1

2i+1
= −1

2
.

A solution was submitted by Hyunbin Yoo, South Korea.

Q1674 A sequence of numbers x1, x2, x3, . . . is generated as follows. We begin with
x1 = 1; then we take the cosine and sine of x1; then the cosine and sine of x2; and so on:

x1 = 1

x2 = cos(x1) = cos(1)

x3 = sin(x1) = sin(1)

x4 = cos(x2) = cos(cos(1))

x5 = sin(x2) = sin(cos(1))
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x6 = cos(x3) = cos(sin(1))

x7 = sin(x3) = sin(sin(1))

x8 = cos(x4) = cos(cos(cos(1)))

and so on. Find the smallest n > 1 such that xn > 0.99.

SOLUTION A general formula for the sequence is x1 = 1 and

x2k = cos(xk) , x2k+1 = sin(xk)

for all positive integers k. We shall consider the numbers xn in sets of 1, 2, 4, 8, . . . by
defining

Sj = {n ∈ Z | 2j ≤ n < 2j+1} and Xj = {xn | n ∈ Sj} .
First we shall show that, for each j ≥ 2, the largest element in Xj is

x2j+2j−1
−2 = cos(sin(sin · · · (sin(cos 1)) · · · )) ,

where there are j − 2 sine terms in the left–hand side; and the smallest is

x2j+2j−1
−1 = sin(sin(sin · · · (sin(cos 1)) · · · )) ,

where there are j − 1 sine terms in the left–hand side. To confirm that this is true for
j = 2, we simply calculate the four terms in X2: we find

x4 = 0.85 , x5 = 0.51 , x6 = 0.66 , x7 = 0.74 ,

and clearly the largest is x4 and the smallest is x5. Now we continue by induction,
showing that if the claimed facts are true for some specific j, then they are also true
for j + 1. It is clear that all values of xn lie between 0 and 1. Therefore, when we form
Xj+1 by calculating the cosine and sine of all elements of Xj , the largest element will
be either the cosine of the smallest element in Xj or the sine of the largest element in
Xj . By assumption, these possibilities are

x2j+1+2j−2 = cos(x2j+2j−1
−1) = cos(sin(sin · · · (sin(cos 1)) · · · ))

with j − 1 sine terms, and

x2j+1+2j−3 = sin(x2j+2j−1
−2) = sin(cos(sin · · · (sin(cos 1)) · · · ))

with j − 2 sine terms, not counting the first one. To determine which of these is the
larger, note that

x2j+1+2j−2 > cos(cos 1) > 0.85 and x2j+1+2j−3 < sin 1 < 0.85 ;

so the largest element of Xj+1 is x2j+1+2j−2, as claimed. The argument for the smallest
element is very similar. The choice lies between

x2j+1+2j−4 = cos(x2j+2j−1
−2) > cos 1 > 0.54

3



and
x2j+1+2j−1 = sin(x2j+2j−1

−1) < sin(cos 1) < 0.52 ;

clearly the latter is the smaller, and is therefore the smallest element of Xj+1. This
completes the proof.

Next, we note that the maximum element of Xj increases as j increases. This is
because if we write

θ = sin(sin · · · (sin(cos 1)) · · · )
with j − 2 sine terms, then sin θ < θ and so

x2j+1+2j−2 = cos(sin θ) > cos θ = x2j+2j−1
−2 .

It follows that the maximum element in any of the sets X0, X1, X2, . . . , Xj is x2j+2j−1
−2.

How long does it take to make this maximum greater than 0.99? We need

sin(sin · · · (sin(cos 1)) · · · ) < arccos(0.99) = 0.141539 · · · ,

where there are j−2 sine terms on the left–hand side. So, enter 1 into a calculator, hit the
“cos” button once and then the “sin” button repeatedly, keeping count of how many
times you hit it, until the result satisfies this inequality. If you have a programmable
calculator or equivalent software, you will be able to automate this. Either way, you
will find that 137 sine terms is not enough but 138 is. In other words, the greatest
element in any of the sets X0, X1, X2, . . . , X139 is

x2139+2138−2 = cos(sin(sin · · · (sin(cos 1)) · · · )) = 0.989943 · · · ,

which is still less than 0.99, and the greatest element in X140 is

x2140+2139−2 = 0.990010 · · · ,

which is greater than 0.99. This looks like our answer, but we should be careful: there
are many terms in X140 before we get to this one (2139 − 2 of them to be precise), and
it is conceivable that one of them, although not the greatest element in X140, might
already be greater than 0.99. To resolve this question, we consider the second largest
and second smallest elements in Xj . We shall show that if j ≥ 3, then the second
largest element of Xj is

x2j+2j−1+2j−2
−2 = cos(sin(sin · · · (sin(cos(sin 1))) · · · )))

with j − 3 sine terms in the middle, not counting the last one; and the second smallest
is

x2j+2j−1+2j−2
−1 = sin(sin(sin · · · (sin(cos(sin 1))) · · · ))) (∗)

starting with j − 2 sine terms. The proof is much the same as we did before, though,
not surprisingly, we have to be a little more careful with the details. First, we check
the statement by direct calculation for j = 3, 4, 5: this is a bit of work but is basically
routine. Now suppose that the claim is true for some specific j ≥ 5. The choice for the
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second largest element of Xj+1 lies between the cosine of the second smallest element
in Xj (because we know that the cosine of the smallest gives the largest element in
Xj+1, not the second largest) and the sine of the largest. Noting that the number of sine
terms in (∗) is at least 3, the element that we are looking for is either

x2j+1+2j+2j−1
−2 = cos(sin(sin · · · (sin(cos(sin 1))) · · · ))

≥ cos(sin(sin(sin(cos(sin 1))))))

> 0.85

or
x2j+1+2j−3 = sin(cos(sin · · · (sin(cos 1)) · · · )) < sin 1 < 0.85 ;

and the former is the larger. Likewise, the choice for second smallest is between

x2j+1+2j−4 = cos(x2j+2j−1
−2) > cos 1 > 0.54

and

x2j+1+2j+2j−1
−1 = sin(x2j+2j−1+2j−2

−1) < sin(sin(sin(sin(cos(sin 1)))))) < 0.53 ;

and the latter is the smaller. Finally, we calculate the second largest element of X140: it
is x2j+2j−1+2j−2

−2 with j = 140. This is an expression with 137 sine terms in the middle,

x2140+2139+2138−2 = cos(sin(sin · · · (sin(cos(sin 1))) · · · )) = 0.989717 · · · ,

which is less than 0.99. Therefore, the element we found above is the only element up
to X140 which exceeds 0.99, and it is xn with

n = 2140 + 2139 − 2 = 2090694862362245919518973588060783891185662 .

Comment. This may be a surprisingly large value of n, seeing that 0.99 is not very close
to 1. Suppose that you tried to brute–force this question by calculating x2, x3, x4, . . .
sequentially until you obtained an answer greater than 0.99. With advanced numerical
software it is currently possible to perform about 230 sine and cosine calculations per
second; at this rate, solving the problem by brute force would take something like
286 ≈ 1026 years.

Q1675 Prove that if a, b, c are positive numbers, then

4a+ 3b+ 2c

4c+ 3b+ 2a
+

4b+ 3c+ 2a

4a + 3c+ 2b
+

4c+ 3a+ 2b

4b+ 3a+ 2c
≥ 3 .

SOLUTION First note that, for any positive x and y,

x

y
+

y

x
≥ 2 .
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There are many easy ways to prove this. Applying this to the three denominators in
the required expression, taken in pairs, we have

4a+ 3c+ 2b

4c+ 3b+ 2a
+

4c+ 3b+ 2a

4a+ 3c+ 2b
≥ 2 ,

4b+ 3a+ 2c

4a+ 3c+ 2b
+

4a+ 3c+ 2b

4b+ 3a+ 2c
≥ 2 ,

4c+ 3b+ 2a

4b+ 3a+ 2c
+

4b+ 3a+ 2c

4c+ 3b+ 2a
≥ 2 .

Now add these three expressions, combining the fractions with the same denominator,
to get

7a+ 6b+ 5c

4c+ 3b+ 2a
+

7b+ 6c+ 5a

4a + 3c+ 2b
+

7c+ 6a+ 5b

4b+ 3a+ 2c
≥ 6 . (∗)

We seek to write the numerator of the first fraction in the form

7a+ 6b+ 5c = α(4a+ 3b+ 2c) + β(4c+ 3b+ 2a) ,

because then, after dividing by 4c+ 3b+ 2a, the first term will give a fraction from our
required expression, and the second will simply give a constant. Equating coefficients
of a, b, c, we want

4α+ 2β = 7 , 3α + 3β = 6 , 2α + 4β = 5 ;

it is easy to solve these equations to get α = 3

2
and β = 1

2
. (Although we have three

equations in two variables, any one is implied by the others, so there are only two
independent equations.) Hence,

7a+ 6b+ 5c

4c+ 3b+ 2a
=

3

2

(4a + 3b+ 2c

4c+ 3b+ 2a

)

+
1

2
;

doing something similar for the other two fractions in (∗) yields

3

2

(4a+ 3b+ 2c

4c+ 3b+ 2a
+

4b+ 3c+ 2a

4a+ 3c+ 2b
+

4c+ 3a+ 2b

4b+ 3a+ 2c

)

+
3

2
≥ 6

and hence
4a+ 3b+ 2c

4c+ 3b+ 2a
+

4b+ 3c+ 2a

4a + 3c+ 2b
+

4c+ 3a+ 2b

4b+ 3a+ 2c
≥ 3 .

Alternative solution, submitted by Hyunbin Yoo, South Korea. We shall use the Cauchy–
Schwartz Inequality

(u1v1 + u2v2 + u3v3)
2 ≤ (u2

1 + u2

2 + u2

3)(v
2

1 + v22 + v23) .

In particular, if we take uk =
√
xk and vk =

√
yk, then this becomes

(x1 + x2 + x3)(y1 + y2 + y3) ≥
(√

x1y1 +
√
x2y2 +

√
x3y3

)2
.
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First, we denote the left hand side of the requested inequality by L, and we add 1 to
each fraction so that they all share the same numerator. Thus,

L+ 3 =
6a + 6b+ 6c

4c+ 3b+ 2a
+

6a+ 6b+ 6c

4a+ 3c+ 2b
+

6a+ 6b+ 6c

4b+ 3a+ 2c

= 6(a + b+ c)

(

1

4c+ 3b+ 2a
+

1

4a+ 3c+ 2b
+

1

4b+ 3a+ 2c

)

.

Notice that the sum of the denominators is equal to 9(a+ b+ c). The previous line can
therefore be written as

L+ 3 =
6

9

(

(4c+ 3b+ 2a) + (4a+ 3c+ 2b) + (4b+ 3a + 2c)
)

×
( 1

4c+ 3b+ 2a
+

1

4a+ 3c+ 2b
+

1

4b+ 3a+ 2c

)

.

Now we can apply the Cauchy–Schwarz inequality stated above, taking x1, x2, x3 to be
the three terms in the first bracket and y1, y2, y3 to be the three fractions in the second
bracket. Since yk = 1/xk in each case, we have

L+ 3 =
2

3
(x1 + x2 + x3)(y1 + y2 + y3) ≥

2

3

(√
x1y1 +

√
x2y2 +

√
x3y3

)2
= 6

and so L ≥ 3.

Comment. The Cauchy–Schwartz Inequality is very important in many areas of ad-
vanced algebra and calculus. It can be generalised to any number of variables, so that

(u1v1 + · · ·+ unvn)
2 ≤ (u2

1 + · · ·+ u2

n)(v
2

1 + · · ·+ v2n) .

A different solution, using Muirhead’s Inequality, was received from Soham Dutta,
DPS Ruby Park, India. This will be the subject of an article by Soham which is sched-
uled to appear in the next issue of Parabola .

Q1676 Let C be a circle on diameter AB, and let α be an acute angle. For any point P
on AB, draw a chord QR of the circle passing through P , with the angle between AB
and QR being equal to α. Given that the quantity

|PQ|2 + |PR|2

is the same for all choices of P , determine the angle α; and then find |PQ|2 + |PR|2 in
terms of the radius of C.

SOLUTION Let O be the centre of the circle, let r be the radius of the circle, and write
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∠OQP = ∠ORP = θ. Then ∠POQ = 180◦ − α− θ and ∠POR = α− θ.

O
A B

P

Q

R

α

θ

θ

Apply the sine rule to triangle OPQ to get

PQ

sin(180◦ − α− θ)
=

r

sinα

and hence

|PQ| = r
sin(180◦ − α− θ)

sinα
= r

sin(α + θ)

sinα
= r

sinα cos θ + cosα sin θ

sinα
.

Treating triangle ORQ similarly gives

|PR| = r
sin(α− θ)

sin(180◦ − α)
= r

sinα cos θ − cosα sin θ

sinα
;

therefore,

|PQ|2 + |PR|2 = r2

sin2 α
(2 sin2 α cos2 θ + 2 cos2 α sin2 θ)

= 2r2
(

cos2 θ +
cos2 α

sin2 α
sin2 θ

)

= 2r2
(

1 +
(cos2 α

sin2 α
− 1

)

sin2 θ
)

.

Now if P changes, then θ changes and therefore the above quantity changes, unless
we have that (cos2 α)/(sin2 α) − 1 = 0; that is, α = 45◦. This is the only case in which
|PQ|2 + |PR|2 has a constant value, and that value is

|PQ|2 + |PR|2 = 2r2 .

Another solution was submitted by Hyunbin Yoo, South Korea, who took M to be the
midpoint of QR and showed that

|PQ|2 + |PR|2 = (|OM |+ |MP |)2 + (|OM | − |MP |)2

= 2
(

r2 + d2(cos2 α− sin2 α)
)

.

For this to be constant, we need cos2 α − sin2 α = 0, which gives α = 45◦ and |PQ|2 +
|PR|2 = 2r2.
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Q1677 For this question, a knockout contest among n entrants means the following.
Let k be the integer for which 2k−1 < n ≤ 2k. Then 2k − n players (chosen at random)
are “given a bye” in the first round: that is, they progress to the next round without
playing a match. The remaining 2n − 2k players play in pairs (once again chosen at
random), and the n − 2k−1 winners also progress. This leaves 2k−1 entrants who will
play in pairs, leaving 2k−2 winners in the next round; and so on; until the overall winner
is decided by a match between the last 2 players. Note that there are no byes after the
first round, and so the eventual winner will play either k − 1 or k matches, depending
on whether they do or do not receive a bye in the first round.

(a) If there are n players at the beginning of the competition, then how many matches
will be played altogether?
Comment: this is a well known problem and there is a very easy solution. Do not
try to consider the number of byes, the number of rounds or other details!

(b) A football club wishes to rank the three strongest arm–wrestlers from a pool of
100 candidates by using a knockout contest to determine the best arm–wrestler;
then another knockout contest to determine the second–best; then another to de-
termine the third–best. Show that if the contests are carefully organised, then this
can be accomplished in 113 matches altogether; but that fewer than 105 matches
will never be enough.

SOLUTION To determine the winner from n entrants, n−1 of them must lose a match.
Therefore, n− 1 matches will be played. This answers question (a).

For (b), this shows immediately that 99 matches will be required in the first contest.
Now, the best contestant will have played either 6 or 7 matches in the first round; and
the second–best contestant must have been the loser in one of these matches (because
nobody except the best can defeat the second–best). Therefore, there is no need to have
all 99 unranked competitors in the second contest, but only these 6 or 7; there will be 5
or 6 matches; and the final winner of this contest will be the second–best arm–wrestler
overall.

Now consider what happened to the third–best entrant in the first contest. That
entrant must have been beaten by either the best or second–best entrant.

• Those in the first category went on to play in the second contest, and the third–
best player must have been beaten by the second–best. But since there were 6
or 7 entrants in this contest, the second–best defeated 2 others (and had a bye
in the first round), or 3 others. Only these 2 or 3 are possible candidates for the
third–best player.

• Now we consider those in the second category. In the first contest, the second–
best player may have played 1 game only (losing to the best player in the first
round); or 7 games (not receiving a bye in the first round, and eventually losing
to the best player in the final); or anywhere in between. So the number of players
defeated by the second–best player in the first contest is from 0 to 6, and these are
the remaining candidates for third–best arm–wrestler.
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Therefore, the total number of competitors in the contest for third place is from 2 to
9; and the number of matches played will be from 1 to 8. Putting all this information
together, the best three arm–wrestlers can always be found in 99+6+8 = 113 matches;
and the minimum requirement is 99 + 5 + 1 = 105 matches.

Q1678 Last Christmas, I pulled a Christmas cracker, and out popped the traditional
paper crown.

While inside the cracker it had been flattened out between two opposite points A and
E, and then folded right half over left three times, as in the diagrams.

A B C D E

E
on top of

A

D
on top of

B C

C
E
A

D
B

It’s clear that if the crown is unfolded, then some of the creases that have been made
will point towards the outside of the crown, and some will point towards the inside.
Is it possible to now refold the crown in the same way as before, but starting with a
different pair of opposite points instead of A and E, and without reversing any of the
folds already made?

SOLUTION Begin by cutting the crown at A and unfolding it into a long strip with E
in the middle. Then fold it back again. The fold at E will point outwards: we denote
this by O. Now given any pre–existing folds, performing another right–on–left fold
will give the following result. The new folds will begin with a copy of the folds we
have already, because it is just like starting with a strip of half the length and doing the
same as has already been done. Then there will be an O fold, because this will always
be the case for the middle fold. Then there will be the folds we have done already, but
taken in reverse order; and with outward folds changed to inward and vice versa . The
operation of performing one extra fold on an existing fold can be represented as

w 7→ wOw∗ ,
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where w∗ means the string of symbols obtained from w by reversing the order of the
symbols and swapping their identity. We know that we start with just O; folding three
times gives

O 7→ O(O)I

7→ OOI(O)OII

7→ OOIOOII(O)OOIIOII .

(The brackets have been inserted to identify the new middle element in each line, but
do not have any real significance.) Now stick the crown together again at A; this will
give an O fold, and so the complete circle of folds, starting at A, is

OOOIOOIIOOOIIOII .

To solve the problem, notice that the I folds always occur in pairs, with one exception
of a single I between two Os. If we were to start the folding process at a different
place, then this isolated I would end up in a different place; and so either it, or one of
its adjacent Os, would not match the folds we have already. Therefore, it is impossible
to fold the crown from a different starting point without reversing any existing folds.

Q1679 David is designing a tiling pattern for his rectangular bathroom floor. Most
people have tilings which consist of rectangles or hexagons, but David thinks this is
boring, so he has decided to use pentagons. Any sorts of pentagonal shapes are ac-
ceptable: they do not have to be regular pentagons, and they need not all be congru-
ent. Moreover, David has decided that an attractive design should have three further
features:

• each corner of the rectangle should belong to only one pentagon, and no two
corners can belong to the same pentagon;

• each boundary point of the rectangle should belong to at most two pentagons;

• each interior point of the rectangle which is a corner of a pentagon should belong
to exactly two other pentagons. (This was stated inaccurately in the previous
issue .)

Show that in order to fulfil these requirements, David must use exactly 8 pentagons;
and draw a possible design for the bathroom floor.

SOLUTION It is not hard to find by trial and error a possible design with 8 pentagons.
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The difficult part of the problem is to prove that no satisfactory design is possible with
more or fewer than 8 pentagons. This can be done by treating it as a problem in graph
theory . In a diagram such as the above, or a hypothetical other diagram satisfying the
design brief, the lines on and inside the rectangle are referred to as edges. The points
where two or more edges meet, including the corners of the rectangle, are called ver-
tices (one is called a vertex). The pentagons are called the regions of the graph; the
infinite area surrounding the rectangle is also counted as a region. There are clearly
4 pentagons at the corners of the rectangle; let the number of pentagons touching the
boundary, other than these 4, be m, and let the number which do not touch the bound-
ary be n. We shall count the number of regions, vertices and edges in an acceptable
design.

• The number of regions is easy: there are n + m + 4 pentagons and the external
region, in total

(number of regions) = n +m+ 5 .

• To count the edges, we note that each pentagon is surrounded by 5 edges, giving
5n + 5m + 20. This counts every internal edge twice, and every boundary edge
once. The number of boundary edges is 2 for each “corner” pentagon and 1 for
each “boundary” pentagon, a total of m+ 8. If we add this to the previous figure,
every edge will have been counted twice, and so

2(number of edges) = 5n + 6m+ 28 .

• To count the number of vertices we take 5 for each pentagon. This counts “inter-
nal” vertices 3 times each, boundary vertices twice and corner vertices once. By
adding the m + 8 boundary and corner vertices, and adding again the 4 corner
vertices, we end up counting every vertex three times. Therefore,

3(number of vertices) = 5(n+m+ 4) + (m+ 8) + 4

= 5n+ 6m+ 32 .

Since the design is drawn on a flat surface without edges crossing, a very important
result known as Euler’s Theorem for planar maps states that

(number of regions) + (number of vertices) = (number of edges) + 2 .

Multiplying by 6 in order to avoid fractions, and substituting the counts we have just
calculated, gives

6(n+m+ 5) + 2(5n+ 6m+ 32) = 3(5n+ 6m+ 28) + 12 ,

which miraculously simplifies to n = 2. So the design must include exactly 2 internal
pentagons.

To determine the number m of boundary pentagons, we concentrate on the internal
vertices of the design – those that do not lie on the boundary of the rectangle. Each
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boundary pentagon gives one of these by itself, and two others shared with another
boundary or corner pentagon; each corner pentagon gives two internal vertices, shared
with another pentagon. Hence,

(number of internal vertices) = m+
2(m+ 4)

2
= 2m+ 4 .

But as there are 2 internal pentagons, and noting that they may share vertices, we have

5 ≤ 2m+ 4 ≤ 10

and so m = 1, 2 or 3. Finally, consider the number of internal edges that connect these
internal vertices (not counting edges which go to the boundary). We count 3 for each
of the vertices from the boundary pentagons, and 2 for each of the “shared” vertices;
but this counts every edge twice; so

2(number of edges) = 3m+ 2(m+ 4) .

It follows from this that m is even; so of our previous possibilities, only m = 2 remains.
Therefore, the bathroom floor must consist of 2 internal pemtagons, 2 boundary pen-
tagons and 4 corner pentagons, a total of 8.

Q1680 Calculate the limit of the sum

Sn =

n−1
∑

k=0

n

(n + k)2

as n tends to ∞.

SOLUTION We have

Sn =

n−1
∑

k=0

n

(n+ k)2

>

n−1
∑

k=0

n

(n+ k)(n + k + 1)

=

n−1
∑

k=0

( n

n+ k
− n

n+ k + 1

)

=
(n

n
− n

n+ 1

)

+
( n

n+ 1
− n

n+ 2

)

+ · · ·+
( n

2n− 1
− n

2n

)

=
n

n
− n

2n

=
1

2

and similarly

Sn <

n−1
∑

k=0

n

(n+ k − 1)(n+ k)

=
n

n− 1
− n

2n− 1
=

1

2
+

1

n− 1
− 1

4n− 2
.
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Putting these inequalities together,

1

2
< Sn ≤ 1

2
+

1

n− 1
− 1

4n− 2
.

Now if n → ∞, then the expression on the right–hand side approaches 1

2
. Since Sn is

trapped between this quantity and 1

2
, it also must approach a limit of 1

2
.

Comment. For readers who have studied integration and Riemann sums, the prob-
lem can also be solved by showing that Sn is a Riemann sum for f(x) = x−2 on the
interval 1 ≤ x ≤ 2, and hence

lim
n→∞

Sn =

∫

2

1

dx

x2
=

1

2
.

This approach was pointed out by Hyunbin Yoo, South Korea.
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