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The 5/8 Theorem
Isaac Lee1

1 Introduction

The goal of this paper is to give a short introduction to group theory, which is a very
important branch of research in mathematics. After introducing the main concepts
of group theory, we will present some examples of groups. We will also state and
present the proof of a theorem that connects group theory and probability theory. More
precisely, we will present a theorem addressing the following question:
What is the probability that two randomly chosen elements in a finite group commute?

2 A First Look Into Group Theory

We can equip the set of integers

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} .

with the addition operation + : Z× Z −→ Z on ordered pair of integers:

(a, b) 7−→ a+ b .

The operation above is the usual sum of integers. One can check that this operation
satisfies important properties which turn Z into an algebraic structure called a group.

Definition 1. A group is a set G equipped with a binary operation · , that is, a function
· : G×G −→ G which satisfies the following properties.

1 Associativity:
For all a, b, c ∈ G,

(a · b) · c = a · (b · c) .

2 Existence of an Identity Element:
There exists an element e ∈ G, called an identity element, such that, for every g ∈ G,

g · e = e = e · g ,

3 Existence of an Inverse:
For each g ∈ G, there exists an element h ∈ G, called an inverse of g, such that

g · h = e = h · g .
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Usually, a group G as above is denoted by (G, ·, e) to emphasize the group operation
and the identity element that G is equipped with. When there is no risk of confusion,
(G, ·, e) will be simply denoted by G.

The image of an ordered pair (a, b) via the operation · is denoted by a · b (or some-
times simply by ab) in place of ·(a, b). This is because a group operation should remind
the reader of the usual multiplication of numbers. Indeed, as we are going to see, mul-
tiplication of numbers defines a group operation on suitable sets of numbers. However,
the function · is not necessarily the usual multiplication operation for numbers; it can
be one of many different operations.

The identity element of a group G, as above, is unique. More precisely, if e′ ∈ G
satisfies the same property as the identity element e, then e = e′. This can be checked
as follows. As e is an identity element, we must have e · e′ = e′. Since e′ is also an
identity element, we have e · e′ = e. Thus, e = e · e′ = e′, showing that the identity
element is unique.

Similarly, for every element g ∈ G, there exists a unique inverse. The proof of this
fact is quite simple and is therefore left as an exercise for the reader. This makes the
following definition well-defined.

Definition 2. The inverse of any element g of a group G is denoted by the symbol g−1.

Example 1. The set Z equipped with the usual addition operation · = + is a group
with identity element e = 0. The inverse of an element n ∈ Z is n−1 = −n. Addition of
integers also satisfies

a+ b = b+ a ,

for every a, b ∈ Z, so Z is an example of an abelian group, defined below.

Definition 3. A group (G, ·, e) is abelian if, for all a, b ∈ G,

a · b = b · a .

Abelian groups are named after early 19th century mathematician Niels Henrik Abel
and they are important because the order in which the “multiplication” of elements is
performed does not matter.

Groups arise in a very natural way in mathematics. Here are common examples.

Example 2. Let (Q,+, 0) denote the set of fractions of the form m/n, where m and n ̸= 0
are integers, equipped with the addition operation + and the identity element 0. This
group is abelian because the sum of two fractions does not change if you switch their
order when adding them. Similarly, the set of real numbers R, equipped with the usual
addition + of numbers and identity element 0, is an abelian group.

Example 3. Let G = R× be the set of non-zero real numbers. The usual multiplication
of numbers, · = ×, defines a binary operation on G. With this operation and the
identity element e = 1, G is an abelian group because multiplying two real numbers
always gives you the same product no matter in which order you multiply them.
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Example 4. The set N consisting of positive integers 0, 1, 2, . . . equipped with the oper-
ation + is not a group since only the element 0 has an inverse.

In order to introduce the next example, which is very important in group theory,
we remind the reader that a function of sets f : X −→ Y is bijective if and only if for
every y ∈ Y there exists a unique element x ∈ X such that y = f(x).

Example 5. Let n = {1, 2, . . . , n} where n is a positive integer. The set of bijective
functions on n,

Sn = {f : n → n : f is bijective} ,

equipped with the operation · given for every f, g ∈ Sn by

g · f = f ◦ g

is a group called the symmetric group on n letters whose identity element is e = idn.
Here, ◦ is the usual composition of functions and idn is the identity function on n. The
elements of Sn are often called permutations. It is useful to note that |Sn| letters is n!.
Indeed, a bijective function from n to itself is just a way of ordering n elements.

In what follows, if n is a positive integer and a1, . . . , ak ∈ n where k ≤ n, then

(a1 · · · ak) ∈ Sn

will denote the bijective function on n given by

a 7−→


ai+1 if a = ai and i < k

a1 if a = ak

a if a ̸= a1, . . . , ak .

A function as above is called a k-cycle. Two cycles (a1 · · · ak), (b1 · · · bh) ∈ Sn are disjoint
if ai ̸= bj for all i = 1, . . . , k and j = 1, . . . , h. As an exercise, the reader might show that
every permutation of the symmetric group Sn can be written as a product of disjoint
cycles. The reader is also invited to show that Sn is abelian if and only if n = 2.

Definition 4. Let (G, ·, e) be a group. A non-empty subset H of G is a subgroup of G if

1 Closure under Products: For all x, y ∈ H ,

x · y ∈ H .

2 Closure under Inverses: For all x ∈ H ,

x−1 ∈ H .

Example 6. The set of integers (Z,+, 0) under addition is a subgroup of the group
(Q,+, 0) which is, in turn, a subgroup of the group of real numbers (R,+, 0).
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Note that if H is a subgroup of a group (G, ·, e), then H must contain the identity
element e. Note also that every subgroup H of a group G is itself a group.

Definition 5. The group consisting of just the identity element e is commonly known as the
trivial group. Furthermore, if G is a group with identity e, then the trivial group is a subgroup
of G and is therefore called the trivial subgroup of G.

For any group (G, ·, e) and any element x ∈ G, define the kth power of x as follows for
each integer k:

xk =


k︷ ︸︸ ︷

x · · ·x if k ≥ 0
e if k = 0

x−1 · · ·x−1︸ ︷︷ ︸
|k|

if k < 0 .

Definition 6. Let G be a group and H be a subgroup of G. If there exists x ∈ G such that

H = {xk : k ∈ Z} ⊆ G ,

then H is a cyclic subgroup of G generated by x. Note that e = x0 is the identity element and
that the inverse of xk ∈ H is x−k.

Example 7. Any group G of cardinality less than or equal to n = 3 is cyclic. This
obvious when n ≤ 2, so let us show the case n = 3. Let G = {e, x, y}. We are going to
show that G is cyclic group generated by x, or in other words, that y = x2.

Since neither x nor y is the identity element e, it follows that x · y ̸= x and x · y ̸= y.
As x · y ∈ G, we must therefore have x · y = e.

Suppose that x2 = e; then x = x · e = x · (x · y) = x2 · y = e · y = y, a contradiction.
Therefore, x2 ̸= e. If x2 = x, then x = x ·e = x · (x ·y) = x2 ·y = x ·y = e, a contradiction.
Therefore, x2 ̸= x. Since x2 is neither e nor x, we see that x2 must equal y.

The example above shows that every group of order 3 can be thought as the cyclic
subgroup of S3 generated by the 3-cycle (123) ∈ S3.

Example 8. A Rubik’s Cube is a cube with 6 faces: up, left, front, right, back and down.
Each face consists of 9 coloured squares called facets. note that in a Rubik’s Cube we
have 54 facets; see Figure 1. An elementary cube move rotates one of the 6 faces: 90◦, 180◦,
270◦, or 360◦ (the face we are rotating goes back to its initial position). A cube move is
a sequence of elementary cube moves. As an elementary cube move does not change
the position of centre facets, any cube move, being just a sequence of elementary cube
moves, does the same.

Now we describe how to turn the set of cube moves into a group. First, number the
facets, excluding the centre facets of each face, of the cube with numbers from 1 to 48.
Then, note that a cube move corresponds to a bijective function 48 → 48. This shows
that the set of cube moves is a subset of the symmetric group on 48 letters. In other
words, each elementary cube move corresponds to a permutation of the number labels,
and each cube move is a combination of these permutations. The composition of two
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Figure 1: Numeration of the facets on a Rubik’s Cube.

cube moves is still a cube move because it will still end up being a combination of ele-
mentary cube moves. Similarly, the inverse of a cube move is still a cube move, since,
again, it is just a composition of elementary cube moves. Therefore, if we equip the
set of cube moves with the operation · being the composition of cube moves, meaning
one cube move performed after another, then we obtain a subgroup of S48, and hence,
a group. This group is called the Rubik’s Cube Group.

Definition 7. The centre of a group G is the subgroup

Z(G) = {z ∈ G : z · g = g · z for all g ∈ G} .

Note that a group G is abelian if and only if G = Z(G).

Example 9. The centre of the symmetric group Sn is Sn itself if n = 2 and the trivial
subgroup {idn} ⊆ Sn if n > 2.

To show the latter, suppose that Z(G) contains an element t ̸= idn. Then there are
at least two distinct elements a, b ∈ such that t(a) = b. We also know that c = t(b) is
different from both a and b. This fact can be verified as follows.

On the one hand, if c = b, then t(b) = c = t(a), so since t is bijective, we have a = b,
which is a contradiction. On the other hand, if c = a, then t does not belong to centre
of Sn. Indeed, since n > 2, there exists s ̸= a, b , so

(a s) · (a b) = (a s b) ̸= (a b s) = (a b) · (a s) .
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Now, let s ∈ Sn be the permutation interchanging b and c and fixing the other elements
of n. On the one hand,

(ts)(b) = (s ◦ t)(b) = s(t(b)) = s(c) = b .

On the other hand,
(st)(b) = (t ◦ s)(b) = t(s(b)) = t(c) ̸= b ,

so, since t is injective, b = t(a) and a ̸= c. This shows that if t ∈ Z(Sn), then t must
be the identity element of Sn. Thus, the centre of the symmetric group Sn is the trivial
subgroup {idn} if n > 2.

Definition 8. Let (G, ·, e) be a group and a ∈ G. The centralizer of a ∈ G is the subgroup

CG(a) = {g ∈ G : a · g = g · a} .

Note that CG(a) = G if and only if a ∈ Z(G).

Example 10. Let us compute the centralizer C of (12) ∈ S3. By definition, a permu-
tation t is contained in C if and only if t stabilises {1, 2}, i.e., if t ◦ (12) = (12) ◦ t or,
equivalently, (12) ◦ t ◦ (12) = t. Let k ∈ 3; then

(t ◦ (12))(k) = t((12)(k)) =


t(2) if k = 1

t(1) if k = 2

t(3) if k = 3 .

Let s = (12) ◦ t ◦ (12). We must have s(k) = t(k) for every k ∈ 3, and the equation
above, for k = 3, implies that (12)(t(3)) = t(3). Therefore, t must fix 3 but the only
permutations of S3 fixing 3 are (12) and id3. This shows that

C = {id3, (12)} .

Definition 9. Two elements x, y ∈ G are conjugate if there exists an element z ∈ G such that

y = z · x · z−1 .

The subset of G consisting of elements conjugate to x is called the conjugacy class of x. Any
subgroups H and K of G are conjugate if there exists g ∈ G such that

H = gKg−1 = {gkg−1 : k ∈ K} .

One can check that if H and K as above are conjugate subgroups of G, then |H| = |K|.

Definition 10. A subgroup N of G is normal, and we write N � G, if gng−1 ∈ N for all
g ∈ G and n ∈ N .

Note that if H is a subgroup of an abelian group G, then H is automatically normal.
Indeed, g · h · g−1 = (g · g−1) · h = h ∈ H for all g ∈ G and h ∈ H .
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Example 11. Let G be a group and Z be its centre. The centre Z is a normal subgroup
of G. Indeed, if g ∈ G and z ∈ Z, then since z commutes with every element of G, we
have

(g · z · g−1) = z ∈ Z .

Example 12. The subgroup N = {id3, (123), (132)} of S3 is normal, since (sts−1) ∈ N
for all t ∈ N and s = (ij) ∈ S3 with distinct i, j ∈ 3.

Definition 11. Let N be a subgroup a group G. The right coset of N in G associated to g is

Ng = {ng : n ∈ N} .

The set of right cosets of N in G is denoted by N\G.

If G is finite, then the cardinality of the set of right cosets of N in G is

|N\G| = |G|
|N |

.

This identity can be proven by Lagrange’s Theorem.

Theorem 12 (Lagrange). Let H be a subgroup of a finite group G. Then |H| divides |G|.

This theorem is fundamental in group theory and its proof can be found in most
Abstract Algebra textbooks, such as [2].

Example 13. Let G be a finite group with identity element e, and let x ∈ G. Let n be
the least positive integer such that xn = e. We already know that x generates a cyclic
subgroup of G, with cardinality n. By Lagrange’s Theorem, we know that n divides |G|.

Example 14. The Rubik’s Cube Group is a subgroup of the symmetric group on 48
letters S48, so its cardinality divides the cardinality of S48. Indeed, the cardinality of
the Rubik’s Cube Group is 43, 252, 003, 274, 489, 856, 000 = 227 · 314 · 53 · 72 · 111, and the
cardinality of S48 is 48! . Lagrange’s Theorem ensures that the first divides the latter.

If N is a normal subgroup of (G, ·, e), then one can check that the operation · on
N\G, defined for all g, h ∈ G by

(Ng) · (Nh) = N(gh)

turns N\G into a group with identity element Ne.

Definition 13. Let N be a normal subgroup of a group G. The quotient group associated to N
is N\G, equipped with the operation and the identity element showed above.

Example 15. Let n ≥ 2 be an integer. As Z is abelian, the cyclic subgroup

nZ = {nk : k ∈ Z}

generated by n is normal. The quotient group Zn = Z/nZ is called the group of integers
modulo n. Usually, the right cosets nZ + x of nZ in Z are denoted by [x]n. Note that
[x]n = [y]n if and only if x− y is an integer multiple of n.
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Lemma 14. Let Z be the centre of a finite group G. If Z\G is cyclic, then G is abelian.

Proof. As Z\G is cyclic, there exists x ∈ G such that

Z\G = {Z · xk : k ∈ Z} ,

so every element g ∈ G can be written as g = z · xk for suitable z ∈ Z and k ∈ Z. So, if
g, h ∈ G, then there exist z, w ∈ Z and r, s ∈ Z such that g = xr · z and h = w · xs. Thus,

g · h = (z · xr) · (w · xs)
= z · (xr · w) · xs (Associativity)
= z · (w · xr) · xs (w ∈ Z)
= (w · z) · xs+r (Associativity) + (z, w ∈ Z)
= w · (xs · z) · xr (Associativity) + (z ∈ Z)
= (w · xs) · (z · xr) (Associativity)
= h · g .

The chain of equalities above shows that G = Z. 2

If x ∈ G, then there is a bijective correspondence

CG(x)/G −→ [x] ⊆ G ,

where [x] is the subset of G consisting of elements conjugate to x. Indeed, the associa-
tion

CG(x) · g 7−→ gxg−1

defines a bijective function. In particular, if G is a finite group, then∣∣[x]∣∣ = |G|
|CG(x)|

.

Definition 15. Let G be a group and let x ∈ G. The conjugacy class of x in G is the set

[x] = {gxg−1 : g ∈ G} .

Two elements x, y ∈ G are equivalent if there exists g ∈ G such that y = g · x · g−1.

If x, y ∈ G, then their conjugacy classes [x] and [y] are either equal or disjoint, i.e.
[x] = [y] or [x] ∩ [y] = ∅. To see this, suppose that z ∈ [x] ∩ [y]. Then there exist s, t ∈ G
such that sxs−1 = z = tyt−1; therefore,

y = (t−1s)x(t−1s)−1

which means that y ∈ [x]; hence, [x] = [y].
Note that the cardinality of the conjugacy class of z ∈ G is equal to 1 if and only

if z ∈ Z(G). Therefore, if G is a finite group, then there exist finitely many elements
x1, . . . , xt ∈ G such that

G = Z(G) ∪ [x1] ∪ · · · [xt] .

Since Z(G), [x1], . . . , [xt] are disjoint,

|G| = |Z(G)|+
t∑

i=1

∣∣[xi]
∣∣ .
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Lemma 16. If G is a finite group and x1, . . . , xk ∈ G are representatives of its conjugacy, then

k ≤ 5

8
|G| .

Proof. By renumbering the elements x1, . . . , xk, we can assume that x1, . . . , xt with
t ≤ k are all the representatives of the conjugacy relation which do not belong to Z(G).
Then

|G| = |Z(G)|+
t∑

i=1

∣∣[xi]
∣∣ .

The conjugacy classes of x1, . . . , xt are nontrivial, so
∣∣[xi]

∣∣ ≥ 2 for i = 1, . . . , t. Therefore,

|G| − |Z(G)|
2

≥ t ,

so
k = t+ |Z(G)| ≤ |G|+ |Z(G)|

2
.

By assumption, G is not abelian, so thanks to Lemma 14, the cardinality of |G|/|Z(G)|
must be at least 4, because groups of size 3 or smaller are cyclic, and in particular,
abelian. This shows that |Z(G)| ≤ |G|/4. Combining this inequality with the inequality
above, we obtain

k ≤ 5

8
|G| .

2

Definition 17. For a finite group (G, ·, e), define

Comm(G) = {(a, b) ∈ G×G : a · b = b · a} .

3 The 5/8 Theorem

Now we are finally ready to state and prove the main theorem of this paper. More
precisely, we show that the probability that two randomly chosen elements of a finite
non-abelian group commute is bounded by 5/8. This theorem was first proven by Paul
Erdős and Pál Turán [4].

Theorem 18. Let G be a finite non-abelian group. Then the probability that two randomly
chosen elements in G commute is

Pr(G) ≤ 5

8
.

Proof. First note that the probability that two randomly chosen elements of G commute
with each other is

Pr(G) =
|Comm(G)|
|G×G|

,
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Note that the subset of elements of G which commute with any given element x is
exactly the centralizer CG(x). Therefore,

|Comm(G)| =
∑
x∈G

|CG(x)| .

Now note that if two elements x, y ∈ G are conjugate, then their centralizers CG(x) and
CG(y) are conjugate subgroups. In particular, they have the same number of elements.
This means that if y1, . . . , yn are all the elements in the conjugacy class of x, then

n∑
i=1

|CG(yi)| = n|CG(x)| .

The number of elements which are conjugate to an element x ∈ G is |G|/|CG(x)|. Let
x1, . . . , xk be representatives of the conjugacy classes in G. Then

|Comm(G)| =
k∑

i=1

|CG(xi)|
|G|

|CG(x)|
= k|G| .

The equation above along with Lemma 16 shows that

Pr(G) ≤ 5

8
. 2
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Figure 2: Multiplication table for S3

We now present an example to help convince the reader that the theorem is true.

Example 16. Let G = S3. To compute Pr(G), we need to count the number of pairs
of permutations (α, β) ∈ G × G such that αβ = βα. To do this easily, one can create a
Cayley table describing the structure of G = S3. The Cayley table of a finite group G,
named after the 19th century British mathematician Arthur Cayley, is just a list of all
the possible products of all the group’s elements. The Cayley table for S3 is given in
Figure 2, where each element of S3 is expressed as a product of the elements ρ = (1 2 3)
and τ = (1 2). Using this table, we can determine the commuting probability of the
symmetric group S3. In particular, the table shows that there are 18 of the 36 ordered
pairs of elements that commute, so Pr(G) = 18/36 = 1/2 < 5/8.
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Example 17. The dihedral group D4 is the group consisting of symmetries of the square.
More precisely, it is the smallest group containing the rotational and reflectional sym-
metries about the symmetries axes of the square, as shown in Figure ??. The dihedral
group D4 can be identified as a subgroup of the symmetric group S4, since the symme-
tries of the square can be identified as bijective functions of the set 4 as follows.

We have four rotational symmetries ρ, ρ2, ρ3 and ρ4 (the identity map), generated by
the a rotation of the square ρ of π/2 degrees corresponding to the cycle (1 2 3 4). Note
that ρ4 is equivalent to the identity element e. Then, we have the reflection σA about the
A-axis corresponding to the cycle (2 4), the reflection σB about the B-axis correspond-
ing to the permutation (1 2)(3 4), the reflection σC about the C-axis corresponding to
the cycle (1 3) and finally, the reflection σD about the D-axis corresponding to the per-
mutation (1 4)(2 3).

By the multiplication table in Figure 4, the number of pairs of elements which com-
mute in D4 is 40, which is exactly 5/8 of the total number of pairs, showing that the
upper bound in the 5/8 Theorem is realized by this group.

4 Discussion

The bound found in the theorem can be refined for some specific classes of nonabelian
finite groups. For instance, this can be done for nonabelian finite simple groups.

Definition 19. A group (G, ·, e) is simple if its normal subgroups of G are just {e} and G.

Example 18. Let G be the cyclic subgroup generated by the cycle (1 2 3) ∈ S3. The
group G is simple. Indeed, the only subgroups of G are {id3} and G itself.

Example 19. The group S3 is not simple. Indeed, the subgroup G of the example above
is normal, as one can easily check by looking at the multiplication table of Figure 2.
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One can show that the bound for the commuting probability can be refined for non-
abelian finite simple groups, as the following theorem demonstrates.

Theorem 20. If G is a non-abelian finite simple group, then

Pr(G) ≤ 1

12
.

Proof. See [3]. 2

In this case too, one can prove that the bound of the theorem above is sharp. The
simplest example of a group where this bound is achieved is the alternating group A5.

Example 20. Given a permutation σ ∈ Sn, one can show that this can be decomposed
as a product of transpositions. This follows from the fact that every cycle (a1 · · · ak)
can be written as (a1 a2) · (a1 a3) · · · (a1 ak). One can check that the parity of the number
of transpositions in the product decomposition of a permutation does not depend on
the particular decomposition, so we can say that a permutation is even if the number
of transpositions in one of its product decomposition is even and odd otherwise. The
alternating group An is the subgroup of Sn generated by even permutations. Clearly,
every 3-cycle is even, so An is generated by all 3-cycles in Sn.

In general, the cardinality of An is 1
2
n! . As we said above, the simplest example

where the upper bound of the 5/8 Theorem for simple groups is achieved is A5. How-
ever, we do not include the multiplication table of A5 since the cardinality of A5 is 60.

As we saw above, the 5/8 Theorem can be refined for finite, nonabelian simple
groups and many other classes of groups. In the future, we hope to be able to refine
the 5/8 Theorem for other classes of groups like symmetric groups.
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