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Divisibility rules by repeated truncation of the unit digit

Bora Demirtas1

1 Introduction

Although divisibility tests are known, we mathematics lovers may not really have a
solid conceptual and algorithmic comprehension on the underlying logic of divisibil-
ity rules, because we simply take it granted without questioning where these rules
come from. Most of us usually resort to available resources when we need to deal
with divisibility rules that are typically stated in a mechanical and uninteresting way.
This leads to a lack of true understanding on how these rules work. Merely utilizing
a mechanism that involves multiplying, adding, or subtracting numbers without actu-
ally grasping the analytical structure that forms the rules is likely to be unproductive
and inefficient.

Let us now have our own eureka moment, and say our own version of “aha, now I
see it!”. The purpose of this manuscript is to provide an easy-to-follow recipe that can
be employed for implementing checks for divisibility. Divisibility rules are not new;
here, however, I convey a straightforward set of modular arithmetic-based principles
behind divisibility rules to make them more accessible. Divisibility is consequential in
a broad range of contexts. For example, checking for primality (whether a particular
number N is prime or composite) for small numbers N entails testing N for division
by each of the primes in turn up to

√
N . In this paper, I elaborate on the design and

construction of these rules that can be formulated in a unified framework for any given
divisor. I also generalise this framework to arbitrary bases.

This article relies heavily on modular arithmetic, so I will first give a gentle intro-
duction to this topic, following [1].

1Bora Demirtas is a junior student at Oak Park and River Forest High School in Oak Park, Illinois.
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2 Modular arithmetic

Imagine a clock. If it is now 10 o’clock, then in 6 hours it will be 4 o’clock: we write this
as 10 + 6 ≡ 4 (mod 12). Here “mod 12” means that we are using a 12-hour clock, so
that 16 is replaced by 4, and we write “≡” instead of “=” because it is a different form
of equality. Similarly, now suppose that 9 more hours pass, the time will be 1 o’clock,
4 + 9 ≡ 1 (mod 12). See the clocks below for a graphical display in the above order.
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This type of calculation is called clock arithmetic; if we add the hours and get a
number that is 12 or larger, then we subtract 12 or a multiple of 12. The answer is then
the remainder after we divide the sum by 12, and it should be one of the numbers from
0 to 11. In general, two integers x and y are congruent mod D if x and y leave the same
remainder when divided by a positive integer D, and we write x ≡ y (mod D).

For example, as we have seen that

16 ≡ 4 (mod 12) and 13 ≡ 1 (mod 12) .

The abbreviation “mod” stands for “modulo”, and the formal name for clock arith-
metic is modular arithmetic. It follows from the definition that x ≡ y (mod p) whenever
the difference x− y is divisible by p. For example,

17 ≡ 2 (mod 5) , 48 ≡ 8 (mod 10) and 7 ≡ −2 (mod 9)

since 5 divides 17− 2 = 15, 10 divides 48− 8 = 40 and 9 divides 7− (−2) = 9.
Since the only remainders when we divide by p are be 0, 1, . . . , p−1, every integer is

congruent to one of these. We can also carry out arithmetic operations on congruences
as long as we stick to the same modulus. For instance, given the congruences

9 ≡ 2 (mod 7) and 13 ≡ 6 (mod 7) ,

we can add, subtract, and multiply as follows:

9 + 13 ≡ 2 + 6 ≡ 8 ≡ 1 (mod 7)

9− 13 ≡ 2− 6 ≡ −4 ≡ 3 (mod 7)

9× 13 ≡ 2× 6 ≡ 12 ≡ 5 (mod 7) .
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In general, if x ≡ y (mod p) and z ≡ w (mod p), then

x+ z ≡ y + w (mod p)

x− z ≡ y − w (mod p)

x× z ≡ y × w (mod p) .

Life is much simpler with modular arithmetic because many things in life have
some sort of periodicity, a phenomenon that can be naturally approached by modular
thinking. A well-known example is the seven days of the week which cycle around like
the hours on a clock. Suppose that each day is coded by integers ranging from 0 to 6,
where 0 stands for Monday, 6 stands for Sunday, and the other days follow the obvious
order. In the picture below (assuming time progresses in the forward direction), if it is
now Sunday, then in five days’ time it will be Friday, because 6 + 5 = 11 ≡ 4 (mod 7).
When four more days pass, it will be Tuesday, because 4 + 4 = 8 ≡ 1 (mod 7).
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Continuing with days of the week, in the calendar we use today, a regular year has
365 days, and a leap year has an extra day on 29 February. The leap years are those
that are divisible by 4, except for the century years that are not also divisible by 400.
Here is another use of modular arithmetic: since 365 ≡ 1 (mod 7), the day of the week
on which any particular date falls advances by one each year, or two when a leap day
kicks in. For example, the New Year’s Eve last year, 31 December 2021, was Friday.
The next one, 31 December 2022, will be Saturday, and the one after that, 31 December
2023, will be Sunday. Then, we will have a leap year in 2024, that is why we need to
add one more day for that, so 31 December 2024 will fall on Tuesday.

OK, let me get a little personal. I was born on 20 August 2006. It was Sunday. When
will my birthday be on Sunday again? Let me call this super birthday. The answer is
2023. Why? There are four leap years between my birth year and 2023 (2008, 2012,
2016 and 2020). Count one day for every year, and add one more day for each of the
leap years: 2023 − 2006 + 4 ≡ 21 ≡ 0 (mod 7). Bingo! How about calculating your
own nearest super birthday and have a bigger cake on that day? (Please remember me
when you are having more cake fun.)

Here is a hopefully entertaining question: When will be the next February that has
five sweet Fridays? For this to happen, the year must be a leap year, and the first and
last days of the month should be Friday. Think why! There is just no other chance.
Last time it happened was in 2008. The cycle of days repeats every 28 years as there
are seven days in a week, and leap years happen every four years. So, the next time a
February will have five Fridays will be in 2008 + 28 = 2036 !
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3 Divisibility rules

After this quick introduction to modular arithmetic, let us go back to divisibility. In the
division operation in the realm of integers, N = qD + r where q is the quotient, D is
the divisor, and r < D is the remainder. Divisibility means that the remainder is 0 after
dividing a number N by another number p. If that happens, N is said to be divisible by
D, and D is said to be a divisor of N . In this case, N ≡ 0 (mod D).

I will now show rules for divisibility by 2, 3, 5, 7 and 19. Then I will provide an
algorithmic infrastructure for subsequent, more sophisticated rules. For each of these
rules, let N = an · · · a1a0 be an n + 1 digit integer and define a = 10n−1an + · · · + a1.
Then

N = 10nan + · · ·+ 10a1 + a0 = 10a+ b

where b = a0.

Divisibility rule for 2

Since 10 ≡ 0 (mod 2), it follows that N ≡ 10a+b ≡ b (mod 2). Therefore, N is divisible
by 2 if and only if b, the last digit of N , is even; that is, if and only if b is 0, 2, 4, 6 or 8.
For instance, 126 is divisible by 2 since its last digit is 6.

Divisibility rule for 3

Since 10 ≡ 1 (mod 3), it follows that

N = 10nan + · · ·+ 10a1 + a0 ≡ 1nan + · · ·+ 1a1 + a0 ≡ an + · · ·+ a1 + a0 (mod 3) .

Therefore, N is divisible by 3 if and only if the sum of digits of N is divisible by 3.
For instance, 126 is divisible by 3 since its sum of digits 1 + 2 + 6 = 9 is divisible by 3.

Divisibility rule for 5

Since N ≡ b (mod 5), it follows that N ≡ 0 (mod 5) if and only if b ≡ 0 (mod 5).
Therefore, N is divisible by 5 if and only if b is either 0 or 5.
For instance, 126 is not divisible by 5 since its last digit, 6, is neither 0 nor 5.

Divisibility rule for 7

Since 1 ≡ −20 (mod 7), it follows that N ≡ 10a + b ≡ 10a− 20b ≡ 10(a− 2b) (mod 7).
The numbers 7 and 10 are coprime, so 7 divides 10(a−2b) if and only if 7 divides a−2b.
Therefore, any number N is divisible by 7 if and only if 7 divides the number obtained
by subtracting the last digit of N twice from the rest of the digits.
For instance, 126 is divisible by 7 since 7 divides 12− 2× 6 = 0.
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Example. By the divisibility rules above, N = 17276 is divisible by 2 but not 3 or 5 since
the last digit of N is 6 and since the sum of digits 1 + 7 + 2 + 7 + 6 = 23 is not divisible
by 3. To determine whether N is divisible by 7, we can use the divisibility rule for 7 and
check whether 7 divides 1727− 2× 6 = 1715. To see whether this is true, we can apply
the rule again: 1715 is divisible by 7 if and only if 7 divides 171 − 2 × 5 = 161. Let us
apply the rule one more time: 161 is divisible by 7 if and only if 7 divides 16−2×1 = 14.
Since 14 is divisible by 7, then so is 161, 1715 and N = 17276.

I will now present divisibility rules for 11 and 19. Before reading on, can you find
such recursive rules yourself?

Divisibility rule for 11

Since 1 ≡ −10 (mod 11), it follows that N ≡ 10a+ b ≡ 10a− 10b ≡ −(a− b) (mod 11).
Therefore, a number N is divisible by 11 if and only if 11 divides the number obtained
by subtracting the last digit of N from the rest of the digits.
For instance, 126 is not divisible by 11 since 11 does not divide 12− 6 = 6.

A better-known rule is based on the difference of the sums of even and odd digits.
In particular,

N = 10nan + · · ·+ 10a1 + a0 ≡ (−1)nan + · · · − a1 + a0 (mod 11) .

Then N is divisible by 11 if and only if 11 divides the difference of the odd-positioned
digits of N and the even-positioned digits of N . For example, 4323 is divisible by 11
since the difference of 4 + 2 = 6 and 3 + 3 = 6 is 0 which is divisible by 11.

Divisibility rule for 19

Since 1 ≡ 20 (mod 19), it follows that N ≡ 10a+ b ≡ 10a+ 20b ≡ 10(a+ 2b) (mod 19).
Numbers 10 and 19 are coprime, so 19 divides 10(a+2b) if and only if 19 divides a+2b.
Therefore, a number N is divisible by 19 if and only if 19 divides the number obtained
by adding the last digit of N twice to the rest of the digits.
For instance, 456 is divisible by 19 since 19 divides 45 + 2× 6 = 57.

Example. By the divisibility rules above, N = 192807263 is divisible by 11 since the
difference of 1+ 2+ 0+ 2+ 3 = 8 and 9+ 8+ 7+ 6 = 30 is −22 which is divisible by 11.
To determine whether N = 17276 is divisible by 19, we can use the divisibility rule for
19 and check whether 19 divides 1727+2×6 = 1739. To see whether this is true, we can
apply the rule again: 1739 is divisible by 19 if and only if 19 divides 173 + 2× 9 = 191.
Since 191 is not divisible by 19, neither 1739 nor N = 17276 are divisible by 19.

Do you see a pattern emerging from the divisibility rules above?

5



4 General divisibility rules

The divisibility rules above suggest a unified framework for creating divisibility rules.
I will focus on those divisors D which are coprime to 2 and 5 and thus also to 10.
These divisors can be written as D = 10c+ d where d = ±1,±3.

Divisibility rule for numbers of the form D = 10c− 1

Since 1 ≡ 10c (mod D), it follows that N ≡ 10a+ b ≡ 10a+10cb ≡ 10(a+ bc) (mod D).
Therefore, any number N is divisible by D if and only if D divides the number obtained
by adding N ’s last digit c times to the rest of N ’s digits.

For instance, N = 319 is divisible by D = 29 since 29 = 10c − 1 for c = 3 and since
29 divides 31 + c× 9 = 31 + 3× 9 = 58.

Divisibility rule for numbers of the form D = 10c+ 1

Since 1 ≡ −10c (mod D), it follows that N ≡ 10a+b ≡ 10a−10cb ≡ 10(a−bc) (mod D).
Therefore, a number N is divisible by D if and only if D divides the number obtained
by subtracting N ’s last digit c times from the rest of N ’s digits.

For instance, N = 441 is divisible by D = 21 since 21 = 10c + 1 for c = 2 and since
21 divides 44− c× 1 = 44− 2× 1 = 42.

Divisibility rule for numbers of the form D = 10c− 3

Since 3(10c − 3) ≡ 3 × 0 ≡ 0 (mod D), we have 1 ≡ 1 − 3(10c − 3) ≡ 10(−3c + 1)
(mod D). Therefore, N ≡ 10a + b ≡ 10a + 10(−3c + 1)b ≡ 10(a − (3c − 1)b) (mod D).
It follows that any number N is divisible by D if and only if D divides the number
obtained by subtracting N ’s last digit 3c− 1 times from the rest of N ’s digits.

For instance, N = 323 is divisible by D = 17 since 19 = 10c − 3 for c = 2 and since
17 divides 32− (3c− 1)× 3 = 32− 5× 3 = 17.

Divisibility rule for numbers of the form D = 10c+ 3

Since 3(10c+3) ≡ 3×0 ≡ 0 (mod D), we have 1 ≡ 1+3(10c+3) ≡ 10(3c+1) (mod D).
Therefore, N ≡ 10a + b ≡ 10a + 10(3c + 1)b ≡ 10(a + (3c + 1)b) (mod D). It follows
that any number N is divisible by D if and only if D divides the number obtained by
adding N ’s last digit 3c+ 1 times to the rest of N ’s digits.

For instance, N = 403 is divisible by D = 13 since 13 = 10c + 3 for c = 1 and since
13 divides 40 + (3c+ 1)× 3 = 40 + 4× 3 = 52.

Example. I conclude this section with a fun composite number. To check whether N is
divisible by D = 99, one could check whether N is divisible by both 9 and 11. However,
a more exciting approach is to group the digits of N in pairs from right, and add them.
If this sum is divisible by 99, then N is divisible by 99, since 100 ≡ 1 (mod 99). More
generally, 102m ≡ 1 (mod 99) for m ≥ 1. Does 99 divide 1234567818? To check this, add
digit pairs as follows: 12 + 34 + 56 + 78 + 18 = 198 = 99× 2. The answer is yes!
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5 Divisibility rules for arbitrary bases

The divisibility rules above assume that the number N is written as a sequence of
decimal (q = 10) digits. However, we can also find divisibility rules when N is written
using base q digits, such as binary (q = 2) digits, for instance. Let N = an · · · a1a0 be an
n+ 1 digit integer written using base q digits, and define a = qn−1an + · · ·+ a1. Then

N = qnan + · · ·+ qa1 + a0 = qa+ b

where b = a0. Our main result is as follows.

Theorem. Let N = qa+ b and D = qc+d be integers with a, b, c, d, q ∈ Z and gcd(d, q) = 1.
Also, let k be an integer such that kd ≡ −1 (mod q). Then N is divisible by D if and only if
D divides the number

a+

(
kc+

kd+ 1

q

)
b .

Proof. Note that kd+ 1 is divisible by q. Since kD ≡ k × 0 ≡ 0 (mod D),

1 ≡ 1 + kD ≡ 1 + k(qc+ d) ≡ kqc+ (kd+ 1) ≡ q

(
kc+

kd+ 1

q

)
(mod D) .

Therefore,

N ≡ qa+ b ≡ qa+ q

(
kc+

kd+ 1

q

)
b ≡ q

(
a+

(
kc+

kd+ 1

q

)
b

)
(mod D) .

Since d and q are coprime, it follows that D = qc+ d and q are also coprime. Therefore,
q(a+(kc+(kd+1)/q)b) is divisible by D if and only if D divides a+(kc+(kd+1)/q)b.
The theorem now follows. 2

This theorem allows us to find divisibility rules over arbitrary bases.

Example. To derive the divisibility rule for 7 from Section 3 from the theorem above,
let q = 10 and D = 7. To express D as qc + d = 10c + d, we could choose the numbers
c = 1, d = −3 and k = −3, noting that kd ≡ (−3)2 ≡ 9 ≡ −1 (mod 10). By the theorem,
N is divisible by 7 if and only if 7 divides

a+

(
kc+

kd+ 1

q

)
b = a+

(
− 3× 1 +

(−3)× (−3) + 1

10

)
b = a− 2b ,

which is the rule that we found previously.

Example. Let us now derive the divisibility rule for 7 with respect to the base q = 2.
To express D as qc + d = 2c + d, we could choose the numbers c = 3, d = 1 and k = 1,
noting that kd ≡ 12 ≡ 1 ≡ −1 (mod 2). By the theorem, any number N = 2a + b is
divisible by 7 if and only if 7 divides

a+

(
kc+

kd+ 1

q

)
b = a+

(
1× 3 +

1× 1 + 1

2

)
b = a+ 4b ,

which is a different rule than that found previously.
For instance, note that N = 91 = 2a + b for a = 45 and b = 1. Therefore, N = 91 is

divisible by 7 since 7 divides a+ 4b = 45 + 4× 1 = 49.
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