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On a class of dense curves
Kriste An1

1 Introduction

A Lissajous curve is the graph of the system of parametric equations

x(t) = cos(αt)

y(t) = cos(βt) .

One can prove that if α/β is rational, then the associated Lissajous curve is algebraic,
i.e., it is the set of zeros of a polynomial.

Figure 1: A Lissajous curve with α = 3 and β = 5.

On the other hand, if α/β is irrational, then the associated curve is dense, meaning
that it nearly fills the square [−1, 1] × [−1, 1]. This is interesting as a curve is a one-
dimensional figure while a square is two-dimensional. In mathematics, there are well-
known examples of curves that completely fill a square, such as Peano curves. These
are, however, not expressible by means of parametric equations and are obtained by
considering a limit of functions, an infinite process.

Figure 2: Some iterations in the construction of a Peano curve.

That is why in this paper, we focus on a class of curves that satisfy a weaker yet more
straightforward condition, namely those that are dense in squares. In Proposition 8,
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the core result of this paper, we will show that any subset of the real line consisting
of elements of the form m + nω, where ω is irrational and m and n are integers, is
dense in the real line. This will allow us to show that if we replace the cosine function
with another continuous, periodic function f , then the curve σ(t) = f(αt)ê1 + f(βt)ê2
is dense in a suitable square, as we will demonstrate in Theorem 13. We can thus
construct a wide variety of curves, all of which are dense in squares.

2 Background in Topology

Definition 1. A subset U of R2 is open in R2 if, for every point p ∈ U , there exists ϵ > 0 such
that the ball

Bϵ(p) = {q ∈ R2 : d(p, q) < ϵ}
is contained in U .

The function d in the definition above is the usual Euclidean distance between
points in the Cartesian plane. The following definition is a generalization of this that
allows us to discuss open subsets in the Cartesian plane.

Definition 2. Let X be a subset of R2. A subset A ⊆ X is open in X if A = U ∩X for some
open subset U ⊆ R2.

Example 1. Let p ∈ X = R × {0} and consider an open ball B = Br(p). Then B ∩ X
is a subset of the form (x− ϵ, x + ϵ)× {0} where x is the first coordinate of p and ϵ is a
positive real number.

In what follows, we will identify R with R × {0}. Note that a subset U of R is open if
and only if, for every x ∈ U , there exists ϵ ≡ ϵ(x) > 0 such that (x− ϵ, x+ ϵ) ⊆ U .

Definition 3. Let f : X −→ Y be a function between subsets X and Y of R2. We say that f
is continuous if f−1(V ) is open in X for every open subset V of Y .

In other words, a function is continuous if arbitrarily small changes in its value can
be assured by restricting it to small enough changes in its argument.

It is important to note that a function f : R −→ R is continuous if and only if its
inverse image f−1(a, b) = {x ∈ X : f(x) ∈ (a, b)} is open for every a < b. This follows
from the fact that every open subset U of the real line can be written as

U =
⋃
i∈I

(ai, bi)

and
f−1(U) =

⋃
i∈I

f−1(ai, bi) .

We remind the reader that given a family of sets {Ai}i∈I indexed by an index set I , the
symbol ∪i∈IAi denotes the union of these sets:⋃

i∈I

Ai = {x : x ∈ Ai for some i ∈ I} .
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Example 2. Let f : R −→ R be the function defined by f(x) = x2 for all x ∈ R. The
function f is continuous. Indeed, we can prove this by considering two distinct cases.
Let (a, b) ⊆ R. If a > 0, then f−1(a, b) = (−

√
b,−

√
a)∪ (

√
a,
√
b) which is open. If a < 0,

then f−1(a, b) = (−
√
b,
√
b) which is open.
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Example 3. Let

f(x) =
{ x , if x ≤ 0

x+ 1 , if x > 0 .

The function f(x) is not continuous. Indeed, the inverse image f−1(−1/2, 1/2) of the
open interval (−1/2, 1/2) is the interval (−1/2, 0] which is not open. This follows from
the fact that there exists no open interval centred at 0 and contained in [0, 1/2).

−3 −2 −1 0 1 2 3

−2

0

2

4

Definition 4. Let X ⊆ R2. A subset D of X is dense in X if, for every point p ∈ X and every
open subset A of X containing p, the intersection A ∩D is nonempty.

In other words, D ⊆ X is dense in X if every point of X is arbitrarily close to D.

Example 4. Let X = R be the x-axis of the Cartesian plane R2 and D = Q be the set of
rational numbers on the x-axis. It is well-known that D is a dense subset of X . Indeed,
every real number can be approximated by a sequence of rational numbers.

Example 5. Let X = [0, 1]× [0, 1] and D = {(x, y) ∈ X : x ∈ Q}. Then D is dense in X
as described in the example above.
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3 A Special Class of Real Subsets

The topology on the real line R results in subsets of R with a topological structure. The
topological properties of subsets of the real line are closely related to their algebraic
properties. This leads us to the following fundamental definition.

Definition 5. A non-empty subset X of R is an additive subgroup if x−y ∈ X for all x, y ∈ X .

Note that each additive subgroup X of R contains 0, −x and x+ y for all x, y ∈ X .

Example 6. Let Z be the subset of the real line consisting of all integer numbers. This
is an additive subgroup. Indeed, if a, b ∈ Z, then a− b ∈ Z.

A feature of the set of integers is that its elements are “distanced” from one another.
More formally, given any positive integer x, we can find a value ϵ > 0 such that the
open interval (x − ϵ, x + ϵ) does not contain any other integer besides x. We can, for
instance, fix ϵ = 1/2. This property is what makes the subset of integers Z discrete in R.

Definition 6. Let X be a subset of R2. A subset Z of X is discrete in X if, for every x ∈ Z,
there exists an open subset Ux of X such that Ux ∩ Z = {x}.

Note that, having identified R as R×{0}, a subset Z of R is discrete if, for every x ∈ Z,
{x} = (x− ϵ, x+ ϵ) ∩ Z for some ϵ > 0.

Example 7. Let ω ∈ R and Ω = {m + nω : m,n ∈ Z} where ω is a rational number. It
is clear that Ω is an additive subgroup of R. We can write ω = a/b where a and b are
integers with b ̸= 0. Then each element x of Ω is of the form x = m+na/b = (mb+na)/b.
Since mb + na is an integer, x is an integer multiple of 1/b. The elements of Ω are
therefore at distance at least 1/b from each other, so, setting ϵ = 1/b,

{x} = (x− ϵ, x+ ϵ) ∩ Ω

for all x ∈ Ω. This proves that Ω is discrete.

Theorem 7. Each additive subgroup X of R is either dense or discrete.

Proof. See [1]. 2

The proof of the theorem above is not straightforward. That is why we present a
weaker version of it below that is closely tied to the purposes of this paper.

Proposition 8. For each ω ∈ R \Q, the following subset is dense in R:

Ω = {m+ nω : m,n ∈ Z} .

To prove this proposition, we must first introduce a few concepts from topology.

Definition 9. Let X be a subset of the real line R. A point p ∈ R is a limit point of X if, for
every ϵ > 0, there exists a point x ∈ X , different from p, such that x ∈ (p− ϵ, p+ ϵ).

That is, p is a limit point of X if we can find points in X arbitrarily close to p.
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Example 8. Let X = {xn = 1/n : n = 1, 2, 3, . . .} ⊂ R. Then 0 is a limit point of X .
Indeed, if ϵ > 0, then we can find a positive integer N such that xN = 1/N < ϵ. Thus,

|xn − 0| = xn < ϵ

for every n ≥ N .

Definition 10. A subset X of R is bounded if X ⊆ [−R,R] for some positive real number R.
If x ≤ M for every x ∈ X , then M is an upper bound of X . Similarly, if x ≥ m for every
x ∈ X , then m is a lower bound of X . If X has an upper bound, then the supremum
supX is the greatest number satisfying supX ≤ M for every upper bound M of X ; otherwise,
supX = ∞. Similarly, if X has a lower bound, then the infimum infX is the smallest number
satisfying infX ≥ m for every lower bound m of X ; otherwise infX = −∞.

Example 9. If X is a bounded subset of R, then either S = sup(x) and s = inf(X) are
limits points of X , or they belong to X . It is enough to prove that this is true for sup(X)
as the same arguments hold for inf(X). If S ̸∈ X , then X does not contain any of its
upper bounds. Let ϵ > 0 and assume, by contradiction, that no point x of X belongs to
(S− ϵ, S+ ϵ). This means, as S is an upper bound of X , that every element of (S− ϵ, S)
is an upper bound of X , a contradiction since S is the smallest upper bound of X .

Lemma 11. Let X ⊆ R. If supS and inf S belong to S for each non-empty subset S of X , then
X is finite.

Proof. Suppose that X is infinite and that S = X contains inf S = infX . Let x0 = infX
and recursively define xn+1 = inf(X \ {x0, . . . , xn}). Now define the set

S ′ = {x0, x1, x2, . . .}

and note that S ′ is a subset of X . Since x0 < x1 < x2 < · · · , it follows that supS ′ cannot
belong to S ′. We have proved that if X is infinite, then either S does not contain inf S
or S ′ = {x0, x1, x2, . . .} does not contain supS ′. In either case, some subset of X does
not contain both its infimum and its supremum. Therefore, if each subset S of X does
contain both inf S and supS, then X cannot be infinite; X must be finite. 2

We now present the Bolzano-Weierstrass Theorem. It is of fundamental importance to
topology and real analysis.

Theorem 12 (Bolzano - Weierstrass). Let X be a bounded, infinite subset of the real line.
Then X has a limit point.

Proof. By Lemma 11, X contains a subset S that does not contain both inf S and supS.
Suppose without loss of generality that S does not contain inf S. Then, by Example 9,
inf S is a limit point for S and thus for X . 2
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As we know, every real number x can be represented via its decimal expansion

x = r. r1r2r3 . . .

where r ∈ Z and r1, r2, . . . are integers between 0 and 9. This expansion is unique
provided that the sequence rn is not eventually constantly equal to 9. We can therefore
treat every real number as its unique decimal expansion, which implies that two real
numbers with two different decimal expansions are distinct.

The decimal expansion of any irrational number x is aperiodic. Indeed, if there
existed positive integers k < m such that

x = r. r1 . . . rk(rk+1 . . . rm)(xk+1 . . . rm) . . . ,

then

x10k = (r10k + r1 . . . rk) + 0. (rk+1 . . . rm)(rk+1 . . . rm) . . .

x10m = (r10m + r1 . . . rm) + 0. (rk+1 . . . rm)(rk+1 . . . rm) . . . ,

so

x =
r(10m − 10k) + r1 . . . rm − r1 . . . rk

10m − 10k
.

In particular, x is rational.

Proof of Proposition 8

Let ω be an irrational number and consider the set Ω = {m+ nω : m,n ∈ Z}.
We first wish to show that [0, 1] ∩ Ω is infinite. Since ω is irrational, it can be repre-

sented as its decimal representation

ω = r. r1r2 . . .

where r is an integer (which we can assume to be positive) and r1, r2, . . . are integers
between 0 and 9. Note that for each positive integer k, the number

ωk = 0. rkrk+1 . . . = 10kω − r − r1 . . . rk−1

belongs to [0, 1] ∩ Ω. Now, since the decimal representation of ω is not periodic, we
can conclude that {ωk}k∈N ⊆ [0, 1] ∩ Ω is infinite. Indeed, the fact that the decimal
representation of ω is not periodic implies that the sequence of truncated decimal rep-
resentations ωk contains an infinite number of distinct elements.

Now, by the Bolzano-Weierstrass Theorem, {ω1, ω2, . . .} has a limit point p; this is
also a limit point for Ω. Then, given ϵ > 0, there exist two distinct elements x1, x2 ∈ Ω
such that |x1 − p| < ϵ/2 and |x2 − p| < ϵ. By the triangle inequality,

|x1 − x2| = |(x1 − p) + (p− x2)| ≤ |x1 − p|+ |x2 − p| < ϵ

2
+

ϵ

2
= ϵ .

Since x = x1 − x2 belongs to Ω, the argument above shows that for every ϵ > 0, we can
find an element x ∈ Ω with an absolute value less than ϵ.
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Now, let y be any real number and let ϵ > 0. Suppose that y ≥ 0. By the above
arguments, we can find x ∈ Ω such that 0 < |x| < min(ϵ, y). Since Ω is an additive
subgroup of R, it also contains −x, so we can assume that 0 < x < min(ϵ, y). Let n be
the greatest positive integer such that

y = nx+ ϵ′

where 0 < ϵ′ < ϵ. As x′ = nx ∈ Ω and |y − x′| = |y − nx| < ϵ′ < ϵ, we have proved that
there is an element x′ of Ω that is at distance less than ϵ from y. A similar argument
holds if y < 0. We have therefore proved that Ω contains points arbitrarily close to any
real point. In other words, Ω is dense in R.

4 Density of Certain Curves

The following theorem is an interesting corollary of Proposition 8 and is the main result
of this paper.

Theorem 13. Let f : R −→ R be a continuous, periodic function with period P > 0. If

m = min
x∈R

f(x) and M = max
x∈R

f(x) ,

then the image of the curve
σ(t) = f(αt)ê1 + f(βt)ê2

is dense in the square Q = [m,M ]× [m,M ] if α/β is irrational.
Here, ê1 and ê2 represent the vectors (0, 1) and (1, 0), respectively.

We prove this theorem later in this section.

Note that the function f in the theorem above is always bounded and must attain
a maximum and a minimum on R. This last fact follows from Theorem 14 below,
first discovered and proved independently by Bolzana in the 1830s and by Weierstrass
in 1960; see [2] for a proof. Note that this theorem applies to periodic continuous
functions as well since their images are determined by an interval of the form [a, b].

Theorem 14. Each continuous function f : [a, b] −→ R is bounded and attains a maximum
value and a minimum value.

Our strategy for proving Corollary 13 is straightforward. We will prove that the
intersection of the image of f with every horizontal segment in the square Q is dense.
This will be enough to check that the image of f is dense in Q since Q can be written
as the union of horizontal segments [m,M ]× {y} such that m ≤ y ≤ M .

x

y

Figure 3: The graph of the periodic function f(x) = arccos(cos(x)).
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Figure 4: The curve σ(t) = f(t)ê1 + f(
√
2t)ê2 on the interval [0, T ] with T = 5, 10, 15.

Lemma 15. A subset D of Q is dense if D ∩ Ly is dense in Ly for every y ∈ [m,M ] where
Ly = {(x, y) ∈ Q : x ∈ [m,M ]}.

Proof. We need to show that for every p ∈ Q, there exists an open ball Bϵ(p) such
that D ∩ Bϵ(P ) ̸= ∅. Let p = (x, y) ∈ Q, ϵ > 0, and B = Bϵ(p). By assumption, the
subset D∩Ly is dense in Ly, so there must exist a value q belonging to D∩Ly such that
q ∈ B ∩ Ly ⊆ B. 2

Lemma 16. Let X and Y be subsets of R2 and f : X −→ Y be a continuous surjective
function. If D is a dense subset of X , then

f(D) = {f(x) : x ∈ D} ⊆ Y

is dense in Y .

Proof. Let y ∈ Y and U ⊆ Y be an open subset containing y. We need to show that
there exists p ∈ D such that f(p) ∈ U . Since f is surjective, there must exist x ∈ X such
that y = f(x). Thus, the subset f−1(y) = {x ∈ X : f(x) = y} is nonempty. As f−1(y)
is a subset of f−1(U), this latter set must be nonempty as well. Therefore, the subset
f−1(U) ⊆ X is a nonempty, open subset of X . Since D ⊆ X is dense in X , there exists
p ∈ D ∩ f−1(U) ⊆ D. This shows that f(p) ∈ f

(
D ∩ f−1(U)

)
⊆ U . 2

Proof of Theorem 13

We want to show that the subset

σ(R) = {σ(t) : t ∈ R} ⊆ Q

is dense in Q. Thanks to Lemma 15, we can check that σ(R) ∩ Ly is dense in Ly for
every y ∈ [m,M ]. Since f is continuous, and the image of f is equal to [m,M ], there
must exist a point x ∈ Q such that f(βx) = y. This implies that (f(αx), y) ∈ Ly. For
every integer k ∈ Z, let xk = x+ kP/β. Then

f(βxk) = f(βx+ β(k + (P/β)) = f(βx+ kP ) = f(βx) = y .

This shows that
Ω′ =

{(
f(αxk + hP ), y

)
: h, k ∈ Z

}
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is a subset of σ(R) ∩ Ly. Let ω = α/β. Then the set Ω′ is the image of the subset

Ω′′ = {(αx+ kωP + hP ) : h, k ∈ Z} ⊆ R

via the function f : R −→ Ly which takes a point q ∈ R to (f(q), y) ∈ Ω′. Now, note
that

Ω′′ = αx+ P · {kω + h : k, h ∈ Z}

which is the image of Ω = {kω + h : k, h ∈ Z} ⊆ R via the function g : R −→ R
defined by g(q) = αx+Pq for all q ∈ R. Thus, we can see that Ω′ = (f ◦ g)(Ω). This also
tells us that the function f ◦ g is continuous and surjective and that Ω is dense in R by
Proposition 8. Thanks to Lemma 16, we can see that Ω′ must be dense in Q.
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