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1 Introduction

The coupon collector problem is a well-known problem in probability theory and ad-
dresses a situation where one collects items (coupons) in a finite collection of size n.
These items arrive randomly and sequentially. The random appearance of items is
shown in Figure 1. Note that we might collect the same coupon multiple times.
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Figure 1: An illustration of the random appearance of items.

The essential objective question is “What is the expected number of coupons one
needs to draw to complete the collection?” In the classical (and simplest) case, all items
in the collection have an equal probability, and one of them arrives at some time. For
this case, the question can be solved by considering that the numbers of coupons are
geometrically distribute; see [2]. Hence, the expected number N of coupons drawn is

E[N]:nZ%.

Over time, the problem has became far more complicated, with more conditions im-
posed, resulting in various alternatives as seen in [2] and other works, including the
multiple subset coupon collector problem [1]. In this variant, coupons are collected at a
constant integer rate of 1, i.e., the number of coupons is a constant for each time they
are drawn. In this case, Chang and Ross [1] tackled the question by assuming that the
entire sequence of drawings is a Poisson process. With this, they found that the mean
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number of coupons needed to draw to complete at least one subset when only one
coupon is randomly obtained at a time, which is

/ H1—H1—e%t} (1)

JES;

A similar problem appears in trading card games where cards are sealed in packets
containing fixed numbers of cards. Moreover, coupons (in this case, cards) may have
varying probabilities. The equal ones are of the same “rarity”, which can be a subset
of the entire collection.

Inspired by this situation, this paper studies the multiple subset coupon collec-
tor problem in which coupons in each subset have an equivalent probability of being
drawn. The purpose of this study is to find how this case can be modified to find the
expected number of coupons required to complete at least one rarity in the collection.
This starts from a simple case with a rate of 1. Simulations are provided as illustrated
examples and for verification.

A real-world application is also given that refers to the recent COVID-19 pandemic.
While testing is important to identify the infected people, governments need to opti-
mize resources and might not be able to test everyone. Our answers to the coupon
collector problem are used to give estimates for appropriate numbers of test kits.

2 The expected number of draws and its variance

Throughout this paper, we consider the multiple subset coupon collector problem. We
can group into subsets items that share some of the same attributes, such as rarities.
These are Poissonised with rate 1, meaning that one item is drawn per time unit. Also,
we assume that the divided subsets are mutually disjoint. We apply Poisson and ex-
ponential distributions, the definitions of which can be found in [3].

The expected value and variance of IV, the number of coupons needed to be drawn
to complete at least one of the subsets, are derived from the result of [1] as follows.

Proposition 1. The expected number of draws in the m-rarity case is

/ H 1— (1—ePtRila,

where p; is the probability of getting card of rarity i, and R, is the number of cards of rarity 1,
forie{1,2,3,....m}.

Proof. Let S; be the rarity subsets having cardinality R;. Each rarity has a uniform
probability, i.e., each coupon in subset S; has probability p;, so the proposition follows
from Equation (1). O

Proposition 2. The variance of the number of coupons in the m-rarity case is

Var(N / tH [1 - e*pft)Ri] dt — E[N](1 + E[N)).



Proof. In [1] it was calculated that

m

Var(N) = Var(T) — - 2/ tH [1 -l -er ] — E[N](1 + E[N))

JES;

where 7' is the time that at least one of the subsets is present in the collection. With the
same argument as in the proof of Proposition 1, we obtain

Var(N / tH [1 - e*pft)Ri] dt — E[N](1 + E[N)).

By Proposition 1, we can describe the common three-rarity case as follows.

Corollary 3. The expected number of draws in three-rarity case is

E[N] = /OOO (1= —em)f|[1-a—er| [1--er)C)ar,

where p,, p, and p. are the probabilities of getting rare, uncommon and common card, respec-
tively. Here, R, U and C are the numbers of rare, uncommon and common cards, respectively.

3 Verification by Simulation Using Python

To verify our theoretical model and its results above, we simulated an actual event
using Python. The simulation starts by applying a random function to represent the
drawing of cards. The remainder from dividing the random number by a constant is
used to classify the card type according to probability. Once one subset is completed,
the drawing time is returned. The program repeats this process millions of times and
calculates the average number, which should align with the theoretical expected value,
and variance.

For the example case, we suppose that the collection contains 2 rare cards with
probability p, = 2.5% each, 4 uncommon cards with p, = 5% each and 5 common
cards with p. = 15% each. Figure 2 shows graphs representing the expectation and
variance from 1 million draws to 100 million draws.

As illustrated by these graphs, the experimental values run toward the theoretical
ones as the number of draws increases in both expected number and variance. This
can imply that the theoretical results are reliable especially when the number of draws
grow large. In the limit, the expected value for N is 13.6447. That means a collector
needs to buy 14 cards, on average, to complete a collection.

4 Application to COVID-19 Testing

In 2019, a type of virus was introduced to humans and changed the world ever since.
For three long years, the pandemic of COVID-19 has caused people to lose, grieve and
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Figure 2: (left) the expectation E[N] versus the number of draws and (right) the vari-
ance Var(N) versus the number of draws for the example case.

suffer as it keeps inevitably going. Mass testing is one strong candidate for rescuing
the world from this tragedy, except that testing costs a lot of money and resource. The
mass testing solution also comes with great plastic waste that we are not yet ready to
handle. It is therefore important to be able to find a good balance between the benefits
and drawbacks. That is, it is important to calculate the least optimal number of tests
needed to be conducted to search for all people with the disease.

We apply our results above to provide an estimate for such an optimal number.
We categorize residents into two non-overlapping subsets: those who are infected by
COVID-19 and those who are not. Populations are defined as R; and R,, respectively.
If a particular country or city has a total population of n, then

To find R;, the number of people infected on a certain day is predicted by analyzing
the trend of the last seven days. For example, 1,000 means that 1,000 people are pre-
dicted to be carrying the disease. Then, the percentage of daily COVID-19 tests that are
positive, p, is used to determine the probability of detecting infected people. If a high
proportion of the COVID-19 tests is positive, there is also a high probability to meet
infected people the next day. At this point, the probability p; of the infected people and
the probability p, of those uninfected can be calculated by

p:ﬂ and pzl_p
% Rz u Ru .

By Proposition 1 with m = 2, we obtaine the expected number of residents that must
be tested to discover those with virus as follows:

E[N] = /OOO [1 —(1- e*pft)Ri] [1 — (1= ety gt )

By this formula, we obtain a very valuable figure, the number of tests that have to be
conducted. In a world where we have limited resources and cannot inconsiderately
create any other excessive waste, this result will contribute to society in a way that cuts
down the number of infections along with developing a sustainable green world.
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5 Simulation data for COVID-19 cases in three countries

This section aims to apply the formula derived in the preceding section to a real-life
COVID-19 pandemic, which occurs in diverse ways around the world. In countries
with severe outbreaks, there are many confirmed cases and positive results. On the
other hand, some countries have only a few confirmed cases and the majority of the
results are negative. Thailand, Germany and the Netherlands were chosen to represent
mild, moderate and severe COVID-19 spread in this simulation. The data in Table 1
were collected on 5 March 2022, from ourworldindata.org.

Country Confirmed cases (per 10,000) | Share of positive results (%)

Thailand 3 36.5

Germany 19 50.7
Netherlands 33 69.8

Table 1: The confirmed cases per 10,000 people and share of positive tests in Thailand,
Germany and the Netherlands on 5 March 2022.

Values for all variables can be determined in Table 2, where each country’s popula-
tion number has been normalised to n = 10, 000 people.

Country R, | R, P i Pu

Thailand 3 19997 | 36.5 | 12.17 | 0.006350905

Germany | 19 | 9981 | 50.7 | 2.67 | 0.004939385
Netherlands | 33 | 9967 | 69.8 | 2.12 | 0.003029999

Table 2: The values of R;, R,, p, p; and p, in Thailand, Germany and the Netherlands

Consequently, we substitute all values in (%) to theoretically compute E[N], while
Python simulation proceeds with trials varying from 100,000 to 1 million. Each of them
is repeated five times, and the average represents the experimental value. The results
from the simulation of each country are shown below. The graphs in Figure 3, Figure
4 and Figure 5 depict experimental value and theoretical value of 100,000 to 1 million
trials in Thailand, Germany and the Netherlands, respectively.

Trials 1 2 3 4 5 Experimental | Theoretical Error (%)
100000 | 15.05464 15.07655 15.02633 15.06144  15.10199 15.064190 15.0644 0.001394015
200000 | 15.05866  15.05029 15.06017  15.08240  15.08089 15.066481 15.0644 0.013814025
300000 | 15.05538 15.06867 15.09295 15.05541 15.07633 15.069749 15.0644 0.035505342
400000 | 15.07179  15.06687  15.04234  15.06399  15.08435 15.065669 15.0644 0.008420515
500000 | 15.05437 15.07642 15.07093 15.03421 15.07230 15.061648 15.0644 0.018265580
600000 | 15.06999 15.06183 15.05486  15.05288  15.07815 15.063542 15.0644 0.005693334
700000 | 15.07264 15.05659 15.06071  15.06005  15.06871 15.063742 15.0644 0.004366017
800000 | 15.06410 15.06930 15.07862 15.07338  15.08051 15.073182 15.0644 0.058293062
900000 | 15.04918 15.07684 15.06278  15.09061  15.06331 15.068543 15.0644 0.027499712

1000000 | 15.07090  15.05964  15.04575 15.05503  15.05231 15.056727 15.0644 0.050931999

Table 3: The experimental value, theoretical value and error in Thailand
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Figure 3: Experimental and theoretical values of 100,000 to 1 million trials, Thailand.

Trials 1 2 3 4 5 Experimental | Theoretical Error (%)
100000 | 134.949 134900 134913 134.840 134.921 134.9046 134.855 0.03678025
200000 | 134.668 134.881 134774 134.890 134.714 134.7854 134.855 0.05161099
300000 | 134.868 134.795 134952 134.867 134.935 134.8834 134.855 0.02105966
400000 | 134.863 134.875 134966 134.828 134.859 134.8782 134.855 0.01720366
500000 | 134.919 134.810 134783 134.800 134.849 134.8322 134.855 0.01690705
600000 | 134.922 134.865 134930 134.759 134.848 134.8648 134.855 0.00726707
700000 | 134.941 134.821 134.863 134.822 134.824 134.8542 134.855 0.00059323
800000 | 134.811 134903 134.820 134.847 134.880 134.8522 134.855 0.00207630
900000 | 134.795 134.868 134.883 134.780 134.894 134.8440 134.855 0.00815691

1000000 | 134.873 134.824 134.819 134.812 134.943 134.8542 134.855 0.00059323

Table 4: The experimental value, theoretical value and error in Germany

As shown in the graphs in Figure 3, Figure 4 and Figure 5, experimental values
converge to theoretical values as the trials increase, except in Thailand where there is
more deviation at the end. This can indicate that the formula is acceptable to use with
COVID-19 testing.

Furthermore, average errors or the average gap between experimental and theo-
retical data of all trials are compared in Thailand, Germany and the Netherlands in
Table 6. As the table shows, average errors decrease in Thailand, Germany and the
Netherlands, respectively. In other words, errors is inversely related to the outbreak
severity. The lowest error found in the Netherlands has the most severe spread. In
contrast, mild spread in Thailand makes the highest error. To conclude, our derived
formula is more accurate in a severe situation, where many people get infected, and
tests are positive.

The implementation of (x), our derived formula, in the highly-spread situation
would give an accurate number of tests to perform. Consequently, this can provide
estimates for optimal numbers of antigen test kits, medical staff, testing time and loca-
tion. These allow governments and local sectors to tackle COVID-19 more efficiently.

As the optimal number of tests to perform is calculated with the data on 5 March
2022, it is compared with the actual number of tests on the following day collected from
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Figure 4: Experimental and theoretical values of 100,000 to 1 million trials, Germany.

Trials 1 2 3 4 5 Experimental | Theoretical Error (%)
100000 | 193.25750  193.24863  193.17501 193.27331  193.36184 193.2270467 193.31 0.000429121
200000 | 193.38768 193.34355 193.30271 193.23541  193.41084 193.3446433 193.31 0.000179211
300000 | 193.29017  193.55209 193.23308  193.29612  193.23044 193.3584444 193.31 0.000250605
400000 | 193.44604 193.35842 193.23667 193.16352  193.29813 193.3470433 193.31 0.000191627
500000 | 193.38047 193.28161 193.37648  193.27272  193.15773 193.3461840 193.31 0.000187181
600000 | 193.30133 193.32104 193.37238 193.25787 193.47164 193.3315822 193.31 0.000111646
700000 | 193.31394 193.25460 193.11048 193.35778  193.43344 193.2263386 193.31 0.000432784
800000 | 193.34429 193.27340 193.28859  193.26602  193.33463 193.3020950 193.31 4.08929E-05
900000 | 193.41607 193.26684 193.25693  193.26201  193.22976 193.3132822 193.31 1.69791E-05

1000000 | 193.39342  193.25777 193.30466  193.31575  193.32798 193.3186157 193.31 4.45692E-05

Table 5: The experimental value, theoretical value and error in the Netherlands
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Figure 5: Experimental and theoretical values of 100,000 to 1 million trials, Netherlands

ourworldindata.org in Table 7. As shown in that table, the real-world data point out
that these three countries conduct fewer COVID-19 tests than they should. Therefore,


ourworldindata.org

Country Confirmed cases (per 10,000) | Share of positive results (%) | Average error (%)

Thailand 3 36.5 0.02242

Germany 19 50.7 0.01622
Netherlands 33 69.8 0.00019

Table 6: The comparison of confirmed cases per 10,000 people, share of positive tests
and errors among Thailand, Germany and the Netherlands.

Country Optimal number of tests (per 10,000) | Actual number of tests (per 10,000)
Thailand 15 9
Germany 134 32

Netherlands 193 50

Table 7: The comparison of optimal and actual number of tests being performed among
Thailand, Germany and the Netherlands.

local sectors might use the most recent number of confirmed cases and share of positive
results to make an appropriate daily decision for regional COVID-19 testing. In addi-
tion, governments can use large-scale data to organize the distribution and long-term
supply of test kits and medical personnel.

6 Discussion and Conclusion

The approach to considering the convergence of the experimental data in Figure 3,
Figure 4 and Figure 5 is not stated in the previous section. The experimental data in
Figure 4 and Figure 5 are convergent. However, the experimental data in Figure 3
appears to diverge at the end. This situation can happen because each experimental
data is obtained by the Python simulation. Hence, it is a random event that sometimes
generate outliers. That is the reason why we also include the mean deviation error bar
in the graphs. By considering the range of error bar, the experimental data in Figure 3
is acceptable for convergence.

In this paper, we combined a multiple subset coupon collector problem with rarities
in which we supposed that all coupons in a subset have the same occurrence proba-
bility. We proposed a formula for the expected number of draws and variance. Then,
the formula is applied with COVID-19 testing to find the expected number of tests that
have to be conducted. The numerical simulations are performed in three countries
with varying levels of outbreak severity. The findings demonstrate that implementing
a formula in a severe outbreak will result in a precise number of tests, which is a benefit
for resource and time management.

The formula can be extended to other sampling events in which non-overlapping
subsets of the population have their own rarities, implying that each individual in the
subset has the same probability of being picked. For instance, it is possible to adapt
with bird watching without capturing or quality control.
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