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On uses and applications of Muirhead’s Inequality
Soham Dutta1

1 Introduction

In this article, we will explore a less-known but very powerful class of inequalities
known as majorisation inequalities. We will particularly focus on the inequality called
Muirhead’s Inequality and will present some of its applications to problems which
have appeared in national and international maths olympiads and other maths com-
petitions.

2 History

Robert Franklin Muirhead

Muirhead’s Inequality is named after and was discov-
ered in 1901 by Robert Franklin Muirhead (1860-1941),
pictured to the right2, who was a mathematician born in
Glasgow, Scotland. Muirhead graduated with a B.Sc. from
the University of Glasgow in 1879 and with an M.A. in
1881, with the highest honours in mathematics and nat-
ural philosophy (physics). He was one of five students
who graduated with an M.A. with Honours in Mathemat-
ics and Natural Philosophy in that year, two with First
Class Honours and three with Second Class Honours.

Throughout his career he published more than 90 pa-
pers, the most famous of them being that of Muirhead’s
Inequality under title “Inequalities relating to some alge-
braic means” [4].

1Soham Dutta is a 12-th grade high-school student studying in Delhi Public School Ruby Park, India.
2This picture was copied from the webpage

https://mathshistory.st-andrews.ac.uk/Biographies/Muirhead/.
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3 Majorisation

Consider sequences x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) that are non-increasing:

x1 ≥ x2 ≥ · · · ≥ xn

y1 ≥ y2 ≥ · · · ≥ yn .

The sequence x majorizes y, which we denote by

x ≻ y ,

if and only if the following conditions hold:

x1 + x2 + · · ·+ xk ≥ y1 + y2 + · · ·+ yk for all k = 1, 2, . . . , n− 1

and x1 + x2 + · · ·+ xn = y1 + y2 + · · ·+ yn .

For example, (3, 0) ≻ (2, 1) since 3 ≥ 2 and 3 + 0 = 2 + 1.
Also, (1, 0, 0) ≻ (1

3
, 1
3
, 1
3
) since 1 ≥ 1

3
, 1 + 0 ≥ 1

3
+ 1

3
and 1 + 0 + 0 = 1

3
+ 1

3
+ 1

3
.

When the sequences x are integral, it can be useful to represent them visually as
stacks of boxes; these are called Young diagrams or Ferrers diagrams. For instance, the
Young diagrams for the sequences (4, 2) and (3, 3) are as follows:

These diagrams can be useful for visualising majorisation. In particular, a sequence
x majorises another sequence y if it is possible to slide blocks from the diagram for x
upwards to form the diagram for y. For instance, the majorisations

(4, 2, 0) ≻ (3, 3, 0) ≻ (3, 2, 1)

can be visualised as follows:

We shall now state Muirhead’s Inequality [4].

Theorem 1 (Muirhead’s Inequality).
Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be non-increasing sequences with x ≻ y.
Then for all be non-negative real numbers a1, a2, . . . , an,∑

sym

ax1
1 ax2

2 · · · axn
n ≥

∑
sym

ay11 ay22 · · · aynn .

If x ̸= y, then equality holds above if and only if a1 = a2 = a3 = · · · = an.
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In the theorem above, the sums use symmetric sum notation, where the index runs
over n! permutations of the exponents 1, 2, . . . , n. For n = 3, examples of the use of this
notation include∑

sym

a1b3c2 = a1b3c2 + a1b2c3 + a2b3c1 + a2b1c3 + a3b2c1 + a3b1c2

∑
sym

a2b2c1 = a2b2c+ b2a2c+ b2c2a+ c2b2a+ c2a2b+ a2c2b = 2(a2b2c+ b2c2a+ c2a2b)

∑
sym

a3b0c0 = a3b0c0 + a3c0b0 + b3c0a0 + b3a0c0 + c3a0b0 + c3b0a0 = 2(a3 + b3 + c3) .

In the last two examples, the sum runs over all 3! = 6 permutations but since some
terms of the sequences are equal, we get 3 pairs of equal terms. Similarly, we end up
with just a single term in the following example:∑

sym

a1b1c1 = a1b1c1 + a1c1b1 + b1a1c1 + b1c1a1 + c1a1b1 + c1b1a1 = 6abc .

Muirhead’s Inequality can be proved by induction on the number of terms of the se-
quences of powers. However, a proof will not be discussed here.

4 Some Useful Standard Inequalities

Here is a list of some common inequalities (without proofs) for later use in the article.
These inequalities can for instance be found in [5].

QM-AM-GM-HM Let a1, a2, . . . , an be n non-negative real numbers. Then√
a21 + a22 + · · ·+ a2n

n
≥ a1 + a2 + · · ·+ an

n
≥ n

√
a1a2 · · · an ≥ n

1
a1

+ 1
a2

+ · · ·+ 1
an

.

Equality occurs if a1 = a2 = · · · = an.

Weighted AM-GM Let p1, p2, . . . , pn, a1, a2, . . . , an ≥ 0 and p1 + p2 + · · ·+ pn = p. Then

1

p

n∑
i=1

piai ≥ p

√√√√ n∏
i=1

apii .

Equality occurs if a1 = a2 = · · · = an.

Cauchy-Schwarz Let a1, a2, . . . , an and b1, b2, . . . , bn. Then( n∑
i=1

a2i

)( n∑
i=1

b2i

)
≥

n∑
i=1

(aibi)
2

Equality holds if ai = kbi for some real k and all i = 1, 2, . . . , n.
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Titu’s Lemma Let a1, a2, . . . , an and b1, b2, . . . , bn. Then

a21
b1

+
a22
b2

+ · · ·+ a2n
bn

≥ (a1 + a2 + · · ·+ an)
2

b1 + b2 + · · ·+ bn
.

Equality holds if ai = kbi for some real k.

Rearrangement Inequality Let a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn. Then∑
i=j

aibj ≥
∑
i ̸=j

i+j ̸=n+1

aibj ≥
∑

i+j=n+1

aibj .

Equality holds if a1 = a2 = · · · = an.

Schur’s Inequality Let t be positive number and let x, y, z be non-negative numbers. Then

xt(x− y)(x− z) + yt(y − z)(y − x) + zt(z − x)(z − y) ≥ 0 .

Equality holds if and only if x = y = z, or two of x, y, z are equal and the third equals 0.

5 Examples and Demonstrations

We now show how to use Muirhead’s Inequality to solve assorted problems.

Example 1. (Problem 1) For positive real numbers x, y, show that x5y1+ y5x1 ≥ x4y2+ y4x2.

We shall give three proofs to this problem: the first using the AM-GM Inequality, the
second using elementary techniques and the third using Muirhead’s Inequality.

Proof. (AM-GM) By the AM-GM Inequality,

x4 + x4 + x4 + y4

4
≥ (x12y4)

1
4 = x3y

y4 + y4 + y4 + x4

4
≥ (x4y12)

1
4 = y3x ,

with equality exactly when x = y. Adding these inequality yields x4 + y4 ≥ x3y + y3x.
Since xy > 0, it follows that x5y1 + y5x1 ≥ x4y2 + y4x2. 2

Proof. (Elementary) Since x and y are both positive,

x5y + y5x− x4y2 − y4x2 = xy (x− y)2(x2 + xy + y2) ≥ 0 .

Hence, x5y + y5x ≥ x4y2 + y4x2, and equality holds if and only if x = y. 2

Proof. (Muirhead) Note that (5, 1) ≻ (4, 2), so apply Muirhead’s Inequality on (x, y).
Equality holds if and only if x = y. 2
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Example 2. (Problem 2) Let a, b, c be positive real numbers. Show that

a2 + b2 + c2 ≥ ab+ bc+ ca

and a3 + b3 + c3 ≥ 3ab .

We show three methods to solve this problem: the first using the AM-GM Inequality,
the second using elementary methods and the third using Muirhead’s Inequality.

Proof. (AM-GM) The AM-GM Inequality yields the following three inequalities:

a2 + b2

2
≥ ab ,

b2 + c2

2
≥ bc ,

c2 + a2

2
≥ ca .

Add these to obtain the problem’s first inequality. Equality occurs when a = b = c.
To show the second inequality, apply the AM-GM Inequality to a3, b3, c3. 2

Proof. (Elementary) To show the first inequality, note that

a2 + b2 + c2 − ab− bc− ca =
1

2

(
(a− b)2 + (b− c)2 + (c− a)2

)
≥ 0 , (1)

with equality occurring if and only if a = b = c.
To show the second inequality, note that a+ b+ c > 0 and apply Inequality (1):

a3 + b3 + c3 − 3abc = (a+ b+ c)(a2 + b2 + c2 − ab− bc− ca) ≥ 0 .

Equality holds if and only if a = b = c. 2

Proof. (Muirhead) Observe that (2, 0, 0) ≻ (1, 1, 0) and (3, 0, 0) ≻ (1, 1, 1) and apply
Muirhead’s Inequality to (a, b, c). 2

In the above example, we do not directly get inequalities a2 + b2 + c2 ≥ ab+ bc+ ca
and a3 + b3 + c3 ≥ 3abc by applying Muirhead’s Inequality. In particular, we get the
inequalities 2(a2 + b2 + c2) ≥ 2(ab + bc + ca) and 2(a3 + b3 + c3) ≥ 6abc; first after
dividing by 2 do we get the required results. This is an important fact that people
overlook when applying Muirhead’s Inequality. It is always a good practice to write
out all terms without considering that they might get repeated.

Example 3. (Problem 3) (Nesbitt) Show that, for positive real numbers a, b, c,

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
.

We show two methods to solve this problem: one using the AM-GM Inequality and
the other using Muirhead’s Inequality.

Proof. (AM-GM) Observe that the given inequality is equivalent to proving

2a+ b+ c

b+ c
+

2b+ a+ c

a+ c
+

2c+ a+ b

a+ b
≥ 6 .
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Now let x = a+ b, y = b+ c, z = a+ c. Hence the above statement transforms to

x+ z

y
+

y + z

x
+

x+ y

z
≥ 6

which is true since
x

y
+

z

y
+

y

x
+

z

x
+

x

z
+

y

z
≥ 6

holds by the AM-GM Inequality, with equality if and only if a = b = c. 2

Proof. (Muirhead) We can re-express the inequality as

2a3 + 2b3 + 2c3 ≥ ab2 + a2b+ bc2 + b2c+ c2a+ a2c ;

but this is true by Muirhead’s Inequality since (3, 0, 0) ≻ (2, 1, 0) . 2

Example 4. (Problem 4) (AM-GM) Show for positive real numbers a1, a2, . . . , an that

a1 + a2 + · · ·+ an
n

≥ n
√
a1a2 · · · an .

The classical proof of the AM-GM Inequality above is by Cauchy Induction. The proof
of the inequality using Muirhead’s Inequality is, however, a little tricky!
Proof. Observe that (1, 0, . . . , 0) ≻ ( 1

n
, 1
n
, . . . , 1

n
). Thus we might apply Muirhead’s

Inequality on (a1, a2, . . . , an). But be careful!! The symmetric sum for the sequence
(1, 0, . . . , 0) has (n − 1)! identical terms and the symmetric sum for ( 1

n
, 1
n
, . . . , 1

n
) has n!

identical terms, all of which must be counted. By applying Muirhead’s Inequality to
(a1, a2, . . . , an), we see that

(n− 1)!(a1 + a2 + a3 + · · ·+ an) ≥ n!(a1a2 · · · an)
1
n .

Simplifying this inequality yields the required result. 2

Let’s now look at a few problems that have previously appeared in maths competitions.

Example 5. (Problem 5) (Russia 1991) Let a, b, c be positive real numbers. Show that

1

a3 + b3 + abc
+

1

b3 + c3 + abc
+

1

c3 + a3 + abc
≤ 1

abc
.

Proof. Clearing the denominators and multiplying both sides by

abc(a3 + b3 + abc)(b3 + c3 + abc)(c3 + a3 + abc)

leads to the equivalent inequality∑
sym

a5b2c2 ≤
∑
sym

a6b3c0 .

This is true by Muirhead’s Inequality since (6, 3, 0) ≻ (5, 2, 2). 2

The next problem is the famous inequality from the Iran 1996 competition.
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Example 6. (Problem 6) (Iran 1996) Prove, for positive real numbers a, b, c,

(ab+ bc+ ca)

(
1

(b+ c)2
+

1

(c+ a)2
+

1

(a+ b)2

)
≥ 9

4
.

Proof. We can re-express this inequality as

4
∑
sym

a5b+
∑
sym

a4bc+ 3
∑
sym

a2b2c2 ≥
∑
sym

a4b2 + 2
∑
sym

a3b2c+ 3
∑
sym

a3b3 . (2)

Since (5, 1, 0) ≻ (4, 2, 0) and (5, 1, 0) ≻ (3, 3, 0), Muirhead’s Inequality implies that

3
∑
sym

a5b ≥ 3
∑
sym

a3b3 and
∑
sym

a5b ≥
∑
sym

a4b2 .

It now suffices to show that∑
sym

a4bc+ 3
∑
sym

a2b2c2 − 2
∑
sym

a3b2c ≥ 0 .

This is equivalent to showing

2abc(a(a− b)(a− c) + b(b− c)(b− a) + c(c− a)(c− b)) ≥ 0 .

This last inequality true by Schur’s Inequality and hence we are done. 2

We now look at Problem S600 [7] proposed by Adrian Andreescu.

Example 7. (Problem 7) (Adrian Andreescu) Let a, b, c be positive real numbers. Show that

8a

3b2 + 2bc+ 3c2
+

8b

3c2 + 2ac+ 3a2
+

8c

3a2 + 2ab+ 3b2
≥ 9

a+ b+ c
.

Proof. We aim to show that

8a2

3ab2 + 2abc+ 3ac2
+

8b2

3bc2 + 2abc+ 3a2b
+

8c2

3ca2 + 2abc+ 3cb2
≥ 9

a+ b+ c
.

By Titu’s Lemma, we have

8a2

3ab2 + 2abc+ 3ac2
+

8b2

3bc2 + 2abc+ 3a2b
+

8c2

3ca2 + 2abc+ 3cb2
≥ 8(a+ b+ c)2

6abc+ 3
∑
sym

ab2
.

It therefore suffices to show that

8(a+ b+ c)2

3ab2 + 3a2b+ 6abc+ 3ac2 + 3bc2 + 3b2c+ 3a2c
≥ 9

a+ b+ c
.

By cross-multiplying and cancelling out like terms, we have to show that

8a3 + 8b3 + 8c3 ≥ 3ab2 + 3a2b+ 6abc+ 3ac2 + 3bc2 + 3b2c+ 3a2c .
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Since (3, 0, 0) ≻ (2, 1, 0) and (3, 0, 0) ≻ (1, 1, 1), Muirhead’s Inequality applied to (a, b, c)
gives

2a3 + 2b3 + 2c3 ≥ 6 abc

and 3(2a3 + 2b3 + 2c3) ≥ 3(ab2 + a2b+ ac2 + bc2 + b2c+ a2c) .

Adding the above inequalities yields the result. 2

The following problem is by Nguyen Viet Hung and was published in Mathematical
Reflections.

Example 8. (Problem 8) Prove that, for positive real numbers a, b, c,

a3

bc
+

b3

ca
+

c3

ab
≥ 3(a3 + b3 + c3)

a2 + b2 + c2
.

Proof. By clearing denominators, we see that it suffices to show

(a4 + b4 + c4)(a2 + b2 + c2) ≥ 3abc(a3 + b3 + c3)

or, equaivalently, ∑
sym

a6b0c0 + 2
∑
sym

a4b2c0 ≥ 3
∑
sym

a4bc .

Since (6, 0, 0) ≻ (4, 1, 1) and (4, 2, 0) ≻ (4, 1, 1), Muirhead’s Inequality applied to (a, b, c)
gives ∑

sym

a6b0c0 ≥
∑
sym

a4bc and 2
∑
sym

a4b2c0 ≥ 2
∑
sym

a4bc .

Adding these two gives our required inequality, with equality when a = b = c. 2

6 Some Words on the Usage of Muirhead’s Inequality

Hopefully, it is by now clear to the reader that Muirhead’s Inequality is nothing but
a stronger version of the AM-GM Inequality. In fact, one can even boldly say that all
problems that can be solved by Muirhead’s Inequality can always be solved using just
the AM-GM Inequality and the Weighted AM-GM Inequality.

The reader must also note that they should not apply Muirhead’s Inequality to
each and every problem they face at the very beginning. It is generally not advisable
to use Muirhead’s Inequality in mathematical contests or competitions. However, if
they are not at all able to find a solution using standard inequalities like the AM-GM
Inequality or the Cauchy-Schwarz Inequality, or if they under time pressure, then it
can sometimes be useful to use Muirhead’s Inequality.

A common usage area of Muirhead’s Inequality is problems that involve fractional
terms. In order to apply Muirhead’s Inequality directly to such cases, one must multi-
ply the terms together and clear the denominators. This process is invariably prone to
calculation errors, and the reader should be very careful in their calculations.
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7 A Common Pitfall

Let’s say you have to prove

a7 + b7 + c7 ≥ a4b3 + b4c3 + c4a3 .

One may exclaim that since (7, 0, 0) ≻ (4, 3, 0), then by applying Muirhead to (a, b, c),
we are done. This is a wrong proof. Why? Because Muirhead’s Inequality works only
for symmetric sums, and∑

sym

a4b3c0 = a4b3c0 + a4c3b0 + b4a3c0 + b4c3a0 + c4a3b0 + c4b3a0 .

Clearly, this is not the left-hand side of the inequality above. A correct solution to this
problem is to observe that the AM-GM Inequality implies that

a7 + a7 + a7 + a7 + b7 + b7 + b7 ≥ 7a4b3

b7 + b7 + b7 + b7 + c7 + c7 + c7 ≥ 7b4a4

c7 + c7 + c7 + c7 + a7 + a7 + a7 ≥ 7c4a3 .

Adding these inequalities yields the required inequality above.
Another example of such a pitfall is to prove, for positive real numbers a, b, c, that

a3 + b3 + c3 ≥ a2b+ b2c+ c2a .

A wrong solution is to note that (3, 0, 0) ≻ (2, 1, 0) and apply Muirhead’s Inequality to
(a, b, c). A correct solution is to observe that the AM-GM Inequality implies

a3 + a3 + b3 ≥ 3a2b

b3 + b3 + c3 ≥ 3b2c

c3 + c3 + a3 ≥ 3c2a .

Adding these yields the required result. Equality holds if and only if a = b = c.
One should always be careful in such kind of questions and pitfalls and carefully

check all the terms on both the right-hand side and the left-hand side of the inequality,
to see whether they really constitute a symmetric sum or not.

8 Problems for Practice

Readers are invited to try the following problems. All problems admit non-Muirhead
solutions but they can be a little tricky to find in certain cases. In most of the problems,
it is better to not apply Muirhead’s Inequality directly but to simplify the problem
using the methods given in Section 4 and then finish the problem using Muirhead’s
Inequality. The problems are not arranged according to difficulty.
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Problem 1. (IMO 2005) Let real numbers x, y, z > 0 satisfy xyz ≥ 1. Prove that

x5 − x2

x5 + y2 + z2
+

y5 − y2

y5 + x2 + z2
+

z5 − z2

z5 + x2 + y2
≥ 0 .

Problem 2. (IMO 1984) Let a, b, c be positive real numbers with a+ b+ c = 1. Show that

0 ≤ ab+ bc+ ca− 2abc ≤ 7

27
.

Problem 3. (IMO 1995) Let a, b, c be positive real numbers with abc = 1. Show that

1

a3(b+ c)
+

1

b3(c+ a)
+

1

c3(a+ b)
≥ 3

2
.

Problem 4. (IMO Shortlist 1998) For real numbers x, y, z > 0 and xyz = 1 prove that

x3

(1 + y)(1 + z)
+

y3

(1 + x)(1 + z)
+

z3

(1 + x)(1 + y)
≥ 3

4
.

Problem 5. Prove that, for real numbers a, b, c > 0,

(a+ b− c)(b+ c− a)(c+ a− b) ≤ abc .

Problem 6. (IberoAmerican Shortlist 2003) Prove that, for real numbers a, b, c > 0,

a3

b2 − bc+ c2
+

b3

c2 − ac+ a2
+

c3

a2 − ab+ b2
≥ 3(ab+ bc+ ca)

a+ b+ c
.

Problem 7. (IMO 1964) (Weizenböck) Let a, b, c be the side lengths of a triangle and let ∆
denote its area. Show that

4
√
3∆ ≤ a2 + b2 + c2 .

Problem 8. (Nguyen Viet Hung) [7] Let a, b, c be the sides of a triangle. Show that

a

b+ c− a
+

b

c+ a− b
+

c

a+ b− c
≥ 3(a2 + b2 + c2)

ab+ bc+ ca
.

Problem 9. For non-negative real numbers a, b, c show that

a3 + b3 + c3 + abc ≥ 1

7
(a+ b+ c)3 .

Problem 10. (Mihaly Bencze, Neculai Stanciu) [7]
Let ABC be a triangle with side-lengths a, b, c. Prove that

a2

bc
+

b2

ca
+

c2

ab
≥ 4− 2r

R

where r and R are the in-radius and circum-radius of the triangle, respectively.
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Problem 11. (Marin Chirciu) For a triangle ABC prove that

hb

h2
a

+
hc

h2
b

+
ha

h2
c

≥ 3r

(
1

h2
a

+
1

h2
b

+
1

h2
c

)
.

where ha, hb, hc denotes the respective altitudes from vertices A,B,C onto the opposite sides
and r is the in-radius.

Problem 12. (AoPS) Let x, y, z be positive real numbers such that (x+ y)(y+ z)(z+ x) = 8.
Prove that

x3y3 + y3z3 + z3x3 + x2y2z2 ≥ 4xyz .

Problem 13. (IMO Longlist 1967) Prove for positive numbers a, b, c that

1

a
+

1

b
+

1

c
≤ a8 + b8 + c8

a3b3c3
.

Problem 14. (Mock USAJMO 2015 Shortlist) Let x, y, z be positive real numbers. Prove
that

(x2 + y2 + z2)2 ≥ 3xyz(x+ y + z) .

Problem 15. (AoPS) Let a, b, c be non-negative real numbers. Prove that

a2 + bc

b2 + bc+ c2
+

b2 + ca

c2 + ca+ a2
+

c2 + ab

a2 + ab+ b2
≥ 2 .

Problem 16. (Mathcenter 2012 Thailand) Let a, b, c ≥ 0 and abc = 1. Prove that

a

b2(c+ a)(a+ b)
+

b

c2(a+ b)(b+ c)
+

c

a2(c+ a)(a+ b)
≥ 3

4
.

Problem 17. (Pham Kim Hung) Let a, b, c be non-negative real numbers with a+ b+ c = 3.
Show that

a2b

4− bc
+

b2c

4− ca
+

c2a

4− ab
≤ 1 .

Problem 18. Let x, y, z be positive real numbers such that xyz = 1. Show that

x+ y + z ≥ 3

x+ 2
+

3

y + 2
+

3

z + 2
.

Problem 19. Let x, y, z be positive real numbers such that x+ y + z = 2. Prove that

x2√y
√
x+ z

+
y2
√
z√

y + x
+

z2
√
x√

z + y
≤

√
x3 + y3 + z3 .

Problem 20. Let a, b, c be positive real numbers satisfying a+ b+ c = a2+ b2+ c2. Show that

ab+ bc+ ca ≤ abc+ 2 .
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