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Solutions 1681–1690
Q1681 The recently popular game “Wordle” challenges you to guess a secret five–
letter word. You may enter any word from the official “Wordle” word list, and you
will be given some information in return. You are allowed a maximum of six guesses.

In the not–at–all well–known game “Squardle”, you have to guess a secret square
number, and you may enter any five–digit square. Here is an example of the start of a
game.

3 0 6 2 5

1 5 3 7 6

Two guesses have been entered so far: 1242 = 15376 and 1752 = 30625. When a digit is
highlighted green in the diagram, it indicates that the digit occurs in the secret square
in the same location as it is in the guess; a yellow highlight indicates a digit which
occurs in the secret square, but not in the same location as in the guess; and a grey
highlight indicates a digit which does not occur in the secret square at all. The secret
square may contain the same digit more than once.

In Squardle, only three attempts are allowed. Can you win the game which was
started above?

SOLUTION Let the digits of the secret square be abcde. We see immediately from the
diagram that

d = 2 , a 6= 1 , b 6= 5 , e 6= 5 .

The digits a, b, c, d, e consist of 1, 2, 5, 7 and one digit x which we don’t yet know (and
which may be a repeat of 1, 2, 5 or 7). We also know from the diagram that x 6= 0, 3, 6,
as these digits do not occur in the answer.

We begin by noting that the sum of the digits in a square is a multiple of 9 plus the
sum of the digits in one of the numbers 02, 12, 22, . . . , 82: these digit–sums are 0, 1, 4, 7
(with some repetitions). So 15 + x must be one of these plus a multiple of 9; this gives
x = 3, which we have already ruled out, or x = 1, 4, 7, which remain as possibilities.

Next, the last digit of a square must be the last digit of one of the numbers

02, 12, 22, . . . , 92 :

these digits are 0, 1, 4, 5, 6, 9. So we can rule out e = 7, and we have e = 1 or e = 4, the
latter only possible if x = 4.
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Thirdly, the alternating sum a − b + c − d + e is the remainder when the number is
divided by 11, and for a square this must be the same as the remainder for one of the
numbers 02, 12, 22, . . . , 102: that is, 0, 1, 3, 4, 5, 9. The alternating sum can also be written
as

a+ b+ c+ d+ e− 2b− 2d = 11 + x− 2b .

Now suppose that x = 7. Then we have e = 1, the only possibility for b is 7, and our
options are 57721 and 75721. But by direct calculation, these are not squares.

Suppose that x = 4. Then b = 1, 4 or 7. The alternating sum is correspondingly
15 − 2b = 13, 7, 1, and only the last is possible. So our options are 47521, 57124, 57421,
and none is a square.

We are left with x = 1, so b = 1, 7 and the alternating sum 12 − 2b = 10,−2 shows
that the former is not possible. The latter is possible since it is 9 plus a multiple of 11,
and it gives the only possibility for the secret square as 57121 = 2392.

Comment. If you are familiar with modular arithmetic , then you will be able to sim-
plify some of these arguments. A nice introduction to modular arithmetic is given in
an article by Bora Demirtas in this issue.

Q1682 Use the Arithmetic–Logarithmic–Geometric Mean Inequality (see the article
by Toyesh Prakash Sharma in the last issue of Parabola) to prove (without a calculator!)
that

e2/
√
5 <

√
5 + 1√
5− 1

< e .

SOLUTION As shown in the article, if x, y are positive numbers, then

√
xy ≤ x− y

ln x− ln y
≤ x+ y

2
;

all three terms are positive, so we can take reciprocals and change the direction of the
inequalities to give

2

x+ y
≤ ln x− ln y

x− y
≤ 1

√
xy

.

Now take

x =

√
5 + 1

2
and y =

√
5− 1

2
.

Then we easily find

xy = 1 , x− y = 1 , x+ y =
√
5 ,

and by using logarithmic laws we have

ln x− ln y = ln

(

x

y

)

= ln

(

√
5 + 1√
5− 1

)

;
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therefore, the inequality becomes

2√
5

≤ ln

(

√
5 + 1√
5− 1

)

≤ 1 .

Taking the exponential of all terms (which is valid since the exponential is an increasing
function) yields the result claimed.

Q1683 For background on this problem, see the article by Timothy Hume in the pre-

vious issue of Parabola. If A and B are points on a sphere, then we shall write AB
⌢

for
the distance on the sphere between A and B. We denote the radius of the sphere by R.

(a) Use the coordinate formulae (2) and (3) in the article to prove the arc–length for-
mula (8).

(b) Prove that if the great circle arcs AC and BC intersect at right angles, then

cos
AB
⌢

R
=

(

cos
AC
⌢

R

)(

cos
BC
⌢

R

)

.

(c) (For readers who have studied advanced calculus.) What do you get from the
result of (b) if the arcs AB, BC and AC are very small compared with R?

SOLUTION Let A and B be the points with coordinates

(x1, y1, z1) = (R sin λ1 cosφ1, R cosλ1 cosφ1, R sin φ1)

(x2, y2, z2) = (R sin λ2 cosφ2, R cosλ2 cosφ2, R sin φ2)

as in Timothy Hume’s article. Then the straight–line distance (“tunnel distance”) be-
tween A and B is given by

D2 = (x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2

= R2(sinλ1 cos φ1 − sin λ2 cosφ2)
2

+R2(cosλ1 cosφ1 − cosλ2 cos φ2)
2

+R2(sinφ1 − sin φ2)
2 .

This looks pretty nasty, but when we expand, we’ll get terms like

sin2 λ1 cos
2 φ1 + cos2 λ1 cos

2 φ1 + sin2 φ1 = cos2 φ1 + sin2 φ1 = 1 .

Doing this very carefully gives

D2 = R2
(

2− 2 sinφ1 sinφ2 − 2 cosφ1 cos φ2 cosλ1 cos λ2 − 2 cosφ1 cosφ2 sinλ1 sin λ2

)

,

and the cos(x− y) formula simplifies this to

D2 = R2
(

2− 2 sinφ1 sinφ2 − 2 cosφ1 cosφ2 cos(λ1 − λ2)
)

.
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Now draw a diagram. (We leave this up to you!) You will see that the angle θ sub-
tended at the centre of the sphere by the arc AB satisfies

sin
θ

2
=

1

2
D

R
=

D

2R

and hence

cos θ = 1− 2 sin2

(θ

2

)

= 1− D2

2R2
= sin φ1 sin φ2 + cosφ1 cosφ2 cos(λ1 − λ2) .

Therefore, the arc length is given by

AB
⌢

= Rθ = R arccos
(

sinφ1 sinφ2 + cos φ1 cos φ2 cos(λ1 − λ2)
)

,

and this proves formula (8).

Comment. It’s not easy to get complicated algebra right first time, and it’s therefore al-
ways worth doing some common–sense checks. This formula should give the distance

from pole to pole when φ1 = 90◦ and φ2 = −90◦: we get AB
⌢

= R arccos(−1) = πR,
which is clearly correct. We might also note that if the difference between the longi-

tudes λ1 and λ2 gets smaller (leaving the latitudes unchanged), then AB
⌢

also becomes
smaller, which makes sense.

The simplest way to approach part (b) is to realise that we can rotate the whole
sphere, leaving distances unaltered, so that C becomes the north pole. Then C has
latitude 90◦. If A is now at latitude φ1 and longitude λ1, and B is at φ2, λ2, then

∠AOC = 90◦ − φ1 , cos
AC
⌢

R
= cos(90◦ − φ1) = sin φ1

and similarly

cos
BC
⌢

R
= sinφ2 .

Since the arcs AC and BC intersect at right angles, λ1 − λ2 = ±90◦, and so the formula
from (a) gives

cos
AB
⌢

R
= sin φ1 sinφ2 =

(

cos
AC
⌢

R

)(

cos
BC
⌢

R

)

as claimed. Readers who have studied Maclaurin series in calculus will know that
there is a very good approximation

cos θ ≈ 1− θ2

2

if θ is small. So if the arcs in (b) are small compared with the radius we have

1− AB
⌢2

2R2
≈

(

1− AC
⌢2

2R2

)(

1− BC
⌢2

2R2

)

,
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which can be simplified to

AB
⌢2 ≈ AC

⌢2

+BC
⌢2 − AC

⌢2

BC
⌢2

2R2
.

If AC and BC are small compared with R, then the last term on the right hand side is
going to be very very small, and we have the approximate relation

AB
⌢2 ≈ AC

⌢2

+BC
⌢2

when AC and BC are perpendicular. That is, Pythagoras’ Theorem holds approxi-
mately on a small part of a sphere. Since it is very hard to distinguish a small part of a
sphere from a flat surface, this makes perfect sense!

Q1684

(a) Let p(x) = 1+2x+3x2 +4x3. Find a polynomial q(x) with integer coefficients, not
all zero, such that when p(x)q(x) is expanded and terms collected, there will be
no terms in xk unless k is a square number. (Note that 0 is a square: so we want a
product polynomial that looks like a+ bx+ cx4 + dx9 + · · · .)

(b) Prove that if we replace p(x) by any polynomial with integer coefficients, a poly-
nomial q(x) with this property can always be found.

SOLUTION We shall consider a product

(1 + 2x+ 3x2 + 4x3)( · · · ) = · · · ,

and shall build up the second factor on the left hand side one term at a time in such a
way as to achieve what we want. Start with

p(x) = 1 + 2x+ 3x2 + 4x3

q(x) = a+ bx

p(x)q(x) = a+ (2a+ b)x+ (3a+ 2b)x2 + (4a+ 3b)x3 + 4bx4 .

Now, we don’t care what coefficients we get for the constant and the x term, but we
want the x2 coefficient to be zero. So we cancel out the (3a + 2b)x2 in the product by
adding an opposite term to q(x): our next attempt is

p(x) = 1 + 2x+ 3x2 + 4x3

q(x) = a + bx− (3a+ 2b)x2

p(x)q(x) = a + (2a+ b)x− (2a+ b)x3 − (9a+ 2b)x4 − (12a+ 8b)x5 .

Now this will have only square exponents, provided that

2a+ b = 0 , 12a+ 8b = 0 .
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Unfortunately, as we have here two linear equations in two unknowns, we expect to
get only the trivial solution a = b = 0, which does not solve our problem. (In some
cases we might be lucky and get a non–trivial solution – check for yourself that in this
case we don’t.) Therefore we continue modifying q(x) so as to eliminate the x3 term:

p(x) = 1 + 2x+ 3x2 + 4x3

q(x) = a + bx− (3a+ 2b)x2 + (2a+ b)x3

p(x)q(x) = a + (2a+ b)x− 5ax4 − (6a+ 5b)x5 + (8a+ 4b)x6 .

At this stage we do not need to eliminate the x4 term, so we take any x4 term in q(x)
and then continue to eliminate unwanted terms,

p(x) = 1 + 2x+ 3x2 + 4x3

q(x) = a+ bx− (3a+ 2b)x2 + (2a+ b)x3 + cx4

p(x)q(x) = a+ (2a+ b)x− (5a− c)x4 − (6a+ 5b− 2c)x5 + (8a+ 4b+ 3c)x6 + 4cx7

and

p(x) = 1 + 2x+ 3x2 + 4x3

q(x) = a + bx− (3a+ 2b)x2 + (2a+ b)x3 + cx4 + (6a+ 5b− 2c)x5

p(x)q(x) = a + (2a+ b)x− (5a− c)x4 + (20a+ 14b− c)x6

+ (18a+ 15b− 2c)x7 + (24a+ 20b− 8c)x8 .

At this stage, to eliminate all terms with non–square exponent, we’ll need to solve three
equations in three unknowns, which, as mentioned above, is unlikely to be successful.
But if we continue for just one more step. . .

p(x) = 1 + 2x+ 3x2 + 4x3

q(x) = a+ bx− (3a+ 2b)x2+ (2a+ b)x3+ cx4+ (6a+ 5b−2c)x5− (20a+14b− c)x6

p(x)q(x) = a+ (2a+ b)x− (5a− c)x4 − (22a+ 13b)x7

− (36a+ 22b+ 5c)x8 − (80a+ 56b− 4c)x9

. . . we now have only two equations in three unknowns (because we don’t care what
coefficient we have for x9), and a non–zero solution is guaranteed. The equations are

22a+ 13b = 0 , 36a+ 22b+ 5c = 0 ,

and with careful working it is not difficult to find an integer solution a = 65, b = −110,
c = 16 (among other possibilities). Checking, we can substitute these values back into
the last equation to yield

p(x) = 1 + 2x+ 3x2 + 4x3

q(x) = 65− 110x+ 25x2 + 20x3 + 16x4 − 192x5 + 256x6

p(x)q(x) = 65 + 20x− 309x4 + 1024x9 ,
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and, as required, all exponents in this product are squares.

For part (b) we take any polynomial

p(x) = p0 + p1x+ p2x
2 + · · ·+ pnx

n

with integer coefficients, and we seek to show that there is a q(x) with integer coeffi-
cients such that the product p(x)q(x) has only terms with square exponents. Inspired
by the answer to (a), we take a polynomial with unknown coefficients and degree
n2 − n, say

q(x) = q0 + q1x+ q2x
2 + · · ·+ qn2−nx

n2−n .

We begin by observing that this polynomial has n2 − n + 1 coefficients, presently un-
known. Now the product will have terms up to xn2

, so n2 + 1 terms in all. This will
include a constant term and terms in x, x4, x9, . . . , xn2

, and there are n + 1 of these.
We don’t care what coefficients are attached to these terms, but we want all the other
terms, n2 − n of them, to have coefficient zero. To achieve this, we need to solve the
equations

p2q0 + p1q1 + p0q2 = 0

p3q0 + p2q1 + p1q2 + p0q3 = 0

p5q0 + p4q1 + p3q2 + p2q3 + p1q4 + p0q5 = 0

...

pnqn2−n−1 + pn−1qn2−n = 0 .

In these equations, the pk are the known coefficients, which are integers, the qk are
the unknowns, and the left hand sides are the coefficients of x2, x3, x5, . . . , xn2−1 in
the product p(x)q(x). Since the system involves n2 − n equations in n2 − n + 1 un-
knowns, there is certain to be a solution with integer values for q0, q1, q2, . . . , qn2−n, and
this solves the problem.

Comment. There is actually nothing special here about the squares, except that there
are infinitely many of them. For example, we could give an almost identical proof
to show that for any p(x) there exists q(x) such that the exponents in the product are
only primes, or only Fibonacci numbers, or. . . or only any infinite set of non–negative
integers.

Q1685

(a) Show how to arrange the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9 around a circle in such a
way that the sum of two neighbouring numbers is never a multiple of 3 or 5 or 7.
In how many ways can this be done?

(b) Given any 9 consecutive integers, is the same task always possible?
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SOLUTION For the first problem, draw a diagram consisting of nine points labelled
1, 2, 3, 4, 5, 6, 7, 8, 9, and a line joining two points whenever their sum is “permissible”,
that is, not a multiple of 3 or 5 or 7.

1

2

3

4

56

7

8

9

We wish to select nine of the lines in such a way as to connect up all nine points and
return to the first point. Since 1, 2 and 4 only have two lines available, the lines shown
in red below are obligatory:

1

2

3

4

56

7

8

9

It is now easy to see that the only way to complete a circuit is to use the lines 3–8–5–6.
So there is only one solution to the problem, if rotations and reflections are counted as
the same solution.

1
3

8

5

62

9

4

7

For question (b), consider nine consecutive integers and let k be the middle number,
so that the least is k − 4 and the greatest is k + 4. Sums of two of these will be some-
where near 2k. To find a value of k which is most likely to fail, we look for a set of
consecutive numbers in which as many as possible are multiples of 3 or 5 or 7. This
can be done systematically (look up the Chinese Remainder Theorem if you would like
to pursue this), but trial and error is probably just as easy; we find that the numbers
48, 49, 50, 51 and 54, 55, 56, 57 all have forbidden factors and are thus “impermissible”
sums. So choosing 2k = 52, that is, k = 26, means that the sums of k with the other
eight numbers are 48, 49, 50, 51, 53, 54, 55, 56. As only one of these sums is allowable, 26
can only have one number adjacent to it, and no circle can be formed with the numbers
22, 23, 24, 25, 26, 27, 28, 29, 30.
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Comment. As the problem depends only on divisibility by 3, 5, 7, the existence (or not)
of a solution with middle number k is effectively the same as the existence for k + 105.
Another impossible case occurs when 2k = 53 + 105, that is, k = 79. These are not the
only cases: an exhaustive computer search reveals that the arrangement is impossible
for k = 25, 26, 27, 28, 77, 78, 79, 80 and possible for all other k from 1 to 105. In some
of these cases, every number has at least two possible neighbours, but the neighbours
cannot “fit together” in a manner which completes a full circle.

Q1686 Simplify
3

√

560 + 158
√
2 + 324

√
3 + 90

√
6

3

√

560− 158
√
2 + 324

√
3− 90

√
6
.

SOLUTION First we try to simplify the cube roots, beginning with the numerator. By
careful but straightforward algebra, we have

(

a+b
√
2+c

√
3
)3

= a(a2+6b2+9c2)+b(3a2+2b2+9c2)
√
2+c(3a2+6b2+3c2)

√
3+(6abc)

√
6 ,

and so we would like to find a, b, c such that

a( a2 + 6b2 + 9c2) = 560 ,

b(3a2 + 2b2 + 9c2) = 158 ,

c(3a2 + 6b2 + 3c2) = 324 ,

6abc = 90 .

Now a system of equations like this is generally going to be very hard to solve, but
perhaps we can guess an answer? The last equation gives abc = 15: let’s guess that
a, b, c are all positive integers. In the first equation, a2 + 6b2 + 9c2 is then a positive
integer, so a is a factor of 560; but 3 is not a factor of 560 and so 3 is not a factor of a.
Similarly, the second equation shows that 3 is not a factor of b and 5 is not a factor of b;
the third shows that 5 is not a factor of c. Since abc = 15, the only remaining possibility
is a = 5, b = 1, c = 3. Now it is important to substitute back and check this, because the
whole procedure depends on a, b, c being integers, which was a guess, not a certainty.
However, this is a matter of simple arithmetic, and we leave it to you to confirm that
our guess is correct, and hence that

(

5 +
√
2 + 3

√
3
)3

= 560 + 158
√
2 + 324

√
3 + 90

√
6 .

To obtain the denominator, all we need do is change the sign of b: thus

(

5−
√
2 + 3

√
3
)3

= 560− 158
√
2 + 324

√
3− 90

√
6 .

Therefore, the expression is

5 +
√
2 + 3

√
3

5−
√
2 + 3

√
3
=

(

5 +
√
2 + 3

√
3
)(

5−
√
2− 3

√
3
)

(

5−
√
2 + 3

√
3
)(

5−
√
2− 3

√
3
) =

√
2 + 3

√
3

5
.
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Q1687

(a) A line with gradient m intersects the ellipse x2 + 2y2 = 3 at the point (1, 1) and
another point. Find the other point.

(b) Find all triples of positive integers a, b, c having no common factor such that a2 +
2b2 = 3c2.

SOLUTION Substituting y = m(x−1)+1 into the equation of the ellipse and collecting
terms gives the quadratic equation

(2m2 + 1)x2 − 4m(m− 1)x+ (2m2 − 4m− 1) = 0 .

Instead of solving by the quadratic formula, note that the two roots must add up to
4m(m − 1)/(2m2 + 1). Since we know that one of the solutions is x = 1, we can easily
find the other, and then substitute back into the equation of the line to find the corre-
sponding y value. After simplification – please check the algebra yourself – we obtain

x =
2m2 − 4m− 1

2m2 + 1
, y =

−2m2 − 2m+ 1

2m2 + 1
, (∗)

which is the other point of intersection between the line and the ellipse.

For part (b), we first note that if m is rational, then the values of x, y in (a) are also
rational. Moreover, the formulae give, with one exception, all possible rational points
(x, y) satisfying the equation x2 + 2y2 = 3. For if (x, y) is a pair of rational numbers,
then the line between (x, y) and (1, 1) has gradient

m =
y − 1

x− 1
,

which is rational, and so (x, y) is given by the above procedure with this value of m.
There are two points where this argument does not quite work.

• If (x, y) is the same as (1, 1), then we have only one point on the line and m is not
defined. However, it is easy to check that we do in fact get (x, y) = (1, 1) by taking
m = −1

2
, which is the gradient of the tangent to the ellipse at (1, 1).

• If (x, y) = (1,−1), then the line joining the points is vertical and does not have a
(finite) gradient. If you take x = 1, y = −1 in equations (∗) and try to solve for m,
then you will find that there is no solution. This is the exception referred to above
– the only rational point on the ellipse which is not given by the formulae (∗).

Since m is rational, we can write m = u/v, where u, v are integers. Making this substi-
tution and multiplying numerators and denominators by v2 gives

x =
2u2 − 4uv − v2

2u2 + v2
, y =

−2u2 − 2uv + v2

2u2 + v2
.

10



Notice that if u = 1, v = 0, then x = 1, y = −1, so we have regained the missing point
mentioned above. To sum up: by taking u and v to be integers, these latest formulae
give all rational solutions of the equation x2 + 2y2 = 3.

Now let a, b, c be integers satisfying a2 + 2b2 = 3c2. By excluding the trivial solution
a = b = c = 0, we can divide by c2 to obtain

(a

c

)2

+ 2
(b

c

)2

= 3

– in essence, exactly the equation we have just studied! Since a/c and b/c are rational,
they are given by

a

c
=

2u2 − 4uv − v2

2u2 + v2
,

b

c
=

−2u2 − 2uv + v2

2u2 + v2
,

where u, v are integers. It may be that we can cancel a common factor out of both
fractions (for example, if v is even then both numerators and denominators have a
factor of 2); therefore, all possible integer solutions of a2+2b2 = 3c2 having no common
factors are given by taking

a = 2u2 − 4uv − v2 , b = −2u2 − 2uv + v2 , c = 2u2 + v2

with u, v integers, and then cancelling any common factors. The solution a = b = c = 0,
which we ignored previously, is now given by the values u = v = 0.

Q1688 A one–person game is played as follows. Begin with a stack of n coins. Split
them into two (non–empty) stacks with say a and b coins; this move gives a score of ab.
Keep splitting the remaining stacks until all stacks consist of a single coin, and add all
the scores. For example, starting with a stack of 30 coins, we might split it into stacks
of 20 and 10, scoring 200; then into 20 and 7 and 3 scoring 21, total score so far 221; and
so on until we have 30 stacks each containing one coin.

Prove that, no matter how the coins are split, the final total score will always be the
same.

SOLUTION We can illustrate the game on a diagram by drawing a point for each coin,
and a line between two points whenever the coins are in the same stack. We begin with
n points, and a line between each pair of points; so there are 1

2
n(n−1) lines. Splitting the

original stack (over the course of one or more moves) into a number of smaller stacks
will separate the points into smaller groups, in each of which every pair of points has
a line joining them. Now splitting any stack, whether it is the original or a smaller
stack, into groups of size a and b, means deleting all the lines between these groups.
There are ab such lines, and this is the score accumulated for the move. Finishing the
game means deleting all the lines in our original diagram, and the total final score will
therefore be the number of initial lines, that is, 1

2
n(n− 1).
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Q1689 An ant walking across the floor noticed a grain of ant poison and a grain of
sugar. Hating poison and loving sugar, the ant decided to walk in such a way that its
distance from the poison increases at the same rate at which its distance to the sugar
decreases. The ant was surprised to discover that no matter how fast it walked, it could
not reach the sugar this way.

(a) Explain why the ant could not reach the sugar as long as it moved in the way
described.

(b) Are there any exceptional cases when the ant could reach the sugar?

(c) Describe the path of the ant in case (a).

SOLUTION When two quantities change at equal and opposite rates, their sum re-
mains constant. Therefore as long as the ant moves in the way described, the sum of
its distances to the two grains will equal AP + AS, where AP is the distance from the
ant to the poison when the motion first begins, and AS is the distance from the ant to
the sugar when the motion first begins. Now imagine that the ant reaches the sugar.
In that case, the sum of its distances to the two grains would equal PS, the distance
between the grains. Thus we would have PS = AP + AS. But, unless the ant started
exactly on a straight line between P and S, this would violate the triangle inequality
for triangle APS. Therefore, the ant cannot reach the sugar as long as it walks in the
way described.

. . . and this argument also shows that the only case in which the ant might reach
the sugar is when it begins its journey directly between the two grains: then it will
head straight towards the sugar and will eventually reach it. . . as long as it walks fast
enough and for long enough.

The path of the ant in (a) will be a curve such that at every point on the curve, the
sum of the distances to the two grains will be constant. Therefore the ant will travel
along an arc of an ellipse that has the two grains as foci.

Q1690 In how many different ways can 10100 (a googol) be factorised as xyz, where
x, y, z are positive integers,

(a) if the order of the factors does matter, for example, 250 × 550 × 1050 is regarded as
different from 550 × 1050 × 250?

(b) if the order of the factors does not matter, for example, 250 × 550 × 1050 is the same
as 550 × 1050 × 250?

SOLUTION We can write the factorisation as

10100 = (2a15b1)× (2a25b2)× (2a35b3) ,

where a1, . . . , b3 are non–negative integers satisfying

a1 + a2 + a3 = 100 , b1 + b2 + b3 = 100 .
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For part (a) of the question, there are no further restrictions on the exponents. We can
specify a choice for the ak which are the exponents of 2 by saying “two” one hundred
times and “next” twice. For example,

“two, two, next, two, two, two, next, two, two, . . . , two”

would correspond to a1 = 2, a2 = 3, a3 = 95. T he number of ways of making this
choice is the number of ways of choosing 2 locations out of 102 for the words “next”,
and this is C(102, 2) = 5151. Exactly the same reasoning applies to the bk, so the total
number of choices, and the total number of ways to write 10100 as a product of three
positive integers, is 51512 = 26532801.

When order matters, we have shown in (a) that there are 51512 possible factorisa-
tions. To tackle the case in which order does not matter, we need to consider when a
factorisation can contain two or more equal terms. First, 10100 is not a cube; so there is
no factorisation of the form xxx. To count factorisations in which two of the factors are
the same and the other is different,

• choose whether the first, second or third factor is to be the different one: there are
3 options;

• choose the repeated factor: it must be a number x = 2a5b such that 22a52b is a factor
of 10100, so 0 ≤ a, b ≤ 50: there are 512 options.

So there are altogether 3×512 factorisations involving a repeated factor, leaving 51512−
3× 512 with no repeated factor. As we are now considering the case where order does
not matter, the former consist of the expressions we want, counted three times each
(since xxz and xzx and zxx are all regarded as the same); the latter are counted six
times each: so the number of different factorisations is

3× 512

3
+

51512 − 3× 512

6
= 4423434 .
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