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An epidemiological application of the Lotka-Volterra model
to predict population dynamics of COVID-19
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1 Introduction

The use of mathematical modelling is increasingly prevalent in a number of branches of
study, including physics and chemistry, and also in biology and economics. The world
is currently combating outbreaks of a lethal disease, namely the coronavirus disease
2019 (COVID-19) caused by the coronavirus SARS-CoV-2. Evidence from the World
Health Organization (WHO) suggests that COVID-19 spreads principally through peo-
ple in close proximity. The virus spreads from an infected individual’s mouth or nose
in small liquid particles, commonly when they cough, sneeze, speak, sing, or breathe.
The susceptible individual can contract the virus through short-range airborne trans-
mission or droplet transmission. COVID-19 can also spread in poorly ventilated indoor
locations, through long-range airborne transmission [16].

Over the last two years, scientists have presented papers on mathematical models
as a tool to analyze the spread of such infectious diseases. This study aims to review
the epidemiological applications of these mathematical models as well as employ a
specific model to simulate active COVID-19 cases.

The Lotka-Volterra model, also known as the predator-prey model, was initially
proposed by a US mathematician Alfred J. Lotka in 1910 [8]. In 1920, Lotka extended
the model and went on to publish a book on biomathematics, where he analysed
predator-prey interactions, in 1925 [9]. Vito Volterra, an Italian mathematician and
physicist, published the same set of equations in 1926 as he had taken an interest in
mathematical biology [15]. The Lotka-Volterra model has also been used in economic
theory and its initial application is commonly credited to Richard Goodwin in 1965 [5].

As a pair of first-order non-linear ordinary differential equations, the Lotka-Volterra
model is generally utilized to describe the dynamics of a biological system in which a
prey and predator interact with each other. It is a simplified version of the Kolmogorov
Model, where competition, disease, and mutualism are deemed negligible. Solutions
to the pair of differential equations are deterministic, i.e., the initial conditions will pro-
vide a certain outcome and there is no randomness (geometric Brownian motion) [2].

In this work, the Lotka-Volterra model is investigated and the pair of differen-
tial equations are solved to show the stability conditions of the model’s equilibrium.
Previously, researchers have used the Lotka-Volterra model to study the interaction
between humans and infectious diseases, which will be reviewed in this study. Us-
ing a susceptible-infected (SI) model, the Lotka-Volterra model’s utility to predict the
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changes in population over a period of time will be presented using a simulation in the
Matrix Laboratory (MATLAB) programming language. This allows readers to derive
additional insights as this study takes existent literature a step forward by applying
the Lotka-Volterra model to the pandemic that presently challenges our world. As
with most mathematical models, several assumptions allow for the pair of differen-
tial equations to describe real-world problems, thus the merits and limitations of the
model will be discussed to evaluate the extent to which the Lotka-Volterra model can
be effectively used to predict the dynamic behavior of COVID-19.

2 Metholodogy

2.1 Theory

The conventional pair of first-order ordinary differential equations associated with the
Lotka-Volterra model were considered [11]:

dx

dt
= x− αxy (1)

dy

dt
= βxy − y . (2)

Here, x denotes the number of prey; y denotes the number of predators; dx
dt

and dy
dt

denote the instantaneous growth rates of the prey and predator populations, respec-
tively; t denotes time; and α and β denote positive real parameters that describe the
interaction of the two species.

The mathematical model discussed in this paper, inspired by the classic Lotka-
Volterra model, assumes that COVID-19 infected individuals act as a predator that
preys on susceptible individuals. As a result, the infection spread by the population of
disease carriers has a similar role to the typical feeding process of the predator popu-
lation in the Lotka-Volterra model.

It is important to note that a number of underlying assumptions exist for the Lotka-
Volterra model [2]: The habitat and diet of the prey are unlimited, thus in the absence
of predators, the prey population increases exponentially (dx

dt
∝ x). The predator sur-

vives solely on the prey, thus in the absence of prey, the predator population decreases
exponentially (dy

dt
∝ −y). The predator has a limitless appetite, i.e., the predator will

not stop eating the prey. Interactions between the predator and prey result in a loss
for the prey population and a gain for the predator population. Therefore, the rate of
change of population is proportional to the size of the population. The environment is
constant and does not favour one species and genetic adaptation is inconsequential.

The same assumptions were employed for the epidemiological use of the mathe-
matical model in this paper, with the inclusion of three additional assumptions: if a
COVID-19 infected individual (predator) recovers, then they return to the susceptible
individuals (prey) population. If an infected individual (predator) dies, then they are
removed from the system. The human birth rate is equal to the human mortality rate,
so infected individuals dying are replaced by new susceptible individuals being born.
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2.2 Literature Review

The approach taken to answer the research question is a combination of a literature
review and a theory paper. The literature review component of this research paper
utilized Google Scholar, Journal Storage (JSTOR), PubMed, ResearchGate, and Science
Direct research databases, consisting of peer-reviewed articles. A search string was em-
ployed combining keywords including “Lotka-Volterra model”, “predator-prey equa-
tions”, “differential equations” paired with “epidemiological application”, “diseases”,
and “COVID-19”, using Boolean operators to broaden the search. Since the epidemio-
logical application of the Lotka-Volterra model is novel, the published works are lim-
ited, resulting in the usage of the majority of the yielded search results.

2.3 Simulation

Simultaneously, the theory component of this research paper utilized the MATLAB
programming language. Developed by MathWorks, MATLAB is a multi-paradigm
programming language for numerical computation and visualization. A simulation
was executed to compute the solutions to the Lotka-Volterra model and to present the
model graphically.

In the simulation, the variables of initial time (t0), final time (tfinal), and initial
predator and prey populations were primarily initialized. The domain of the time
variable was set as 0 ≤ t ≤ 15 with an arbitrary unit. The initial predator and prey
populations were set as 50 units each to create an initial state of equilibrium. Next,
a function was defined and named “LotkaODE”, which was used to contain the pair
of differential equations and simulate the system. For this simulation, the parameter
values of α = 0.01 and β = 0.02 were used. Then, the system was simulated using the
MATLAB command ode45 which performs a direct numerical integration of a set of
ordinary differential equations using the Runge-Kutta method. The ode45 command
was appointed as it uses a 4th and 5th order pair that achieves a greater degree of
accuracy [11]. Finally, the resulting populations were plotted against time.

3 Results

3.1 Theory

To acquire the equilibrium solutions to the pair of differential equations, the concept of
an equilibrium must be understood. An equilibrium is defined as a “state of balance”,
therefore the infected individual and susceptible individual populations are not chang-
ing with respect to time, allowing for the pair of differential equations to be rewritten
as:

x− αxy = 0 (3)
βxy − y = 0 (4)

3



Solving for susceptible individuals (x) and infected individuals (y) yields the following
two solutions:

x = 0 and y = 0 (5)

and
x =

1

β
and y =

1

α
(6)

The first solution, Equation 5, shows that if there are no susceptible individuals and
no infected individuals, i.e., the human species is extinct, then they will remain extinct
until acted upon by an external factor. The second solution, Equation 6, shows another
equilibrium where the number of susceptible individuals is equal to the ratio of 1 to
the constant β and the number of infected individuals is equal to the ratio of 1 to the
constant α. Both constants denote biological parameters that describe the interaction
between the species, therefore populations at which the equilibrium occurs depend on
the interaction coefficients.

The Jacobian matrix is used to determine the stability of the two fixed points, as it
collects the partial derivatives of the multivariate function to find the local linearisa-
tion of the two equilibrium points. The eigenvalues are used to determine the linear
stability properties of the equilibrium, hence the nature of the non-linear system of
equations can be established.

The Jacobian matrix, J , for the epidemiological model of the Lotka-Volterra system
is

J(x, y) =

[
1− αy −αx
βy βx− 1

]
(7)

The Jacobian at the first fixed equilibrium point (0, 0) is equal to

J(0, 0) =

[
1 0
0 −1

]
(8)

The eigenvalues at the first fixed equilibrium point are

λ1 = 1 and λ2 = −1 . (9)

Since the first stationary point has one positive and one negative eigenvalue, it is clas-
sified as a saddle point which is unstable. The Jacobian at the second fixed equilibrium
point ( 1

β
, 1
α
) is equal to

J(
1

β
,
1

α
) =

[
0 −α

β
β
α

0

]
(10)

The eigenvalues at the second fixed equilibrium point are

λ1 = i and λ2 = −i . (11)

Since the secondary stationary point has eigenvalues that are both purely imaginary
and conjugate to each other, it is classified as a center for closed orbits which is stable
but not asymptotically stable.

Therefore, the solutions obtained are periodically oscillate on a closed ellipse about
the fixed point with a frequency ω =

√
λ1λ2 = 1 and a period T = 2π

ω
= 2π.
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3.2 Literature Review

Scientists have presented applications of the Lotka-Volterra model in a plethora of
fields, particularly in biology. Research from el Arabi et al. [1] has shown combina-
tions and comparisons between the Lotka-Volterra model and other models such as
the Susceptible, Infected, Recovered (SIR) model and the Monod model, proving that
these non-linear coupled systems of equations do not yield analytical solutions. As
a result, there is a need for the Runge-Kutta method, which proved to be an efficient
method in solving the non-linear coupled systems [1].

In addition, scientists have explored an extension of the Lotka-Volterra model in
which some infectious disease is introduced in the system. In research by Das [4],
a modification of the standard predator-prey model is inspected; a parasitic disease
infects the predator population and creates a new variable. It is important to note that
an additional assumption is naturally added: the parasite is horizontally transmitted.
In this work, it is observed that “the introduction of disease in the predator population
stabilizes predator-prey oscillations”, potentially offering an explanation as to why
natural populations tend to be relatively stable in the real world [4].

Alternately, research by Ghasemabadi and Doust [6] employs a different approach
of introducing disease to the predator population. By introducing the disease to the
prey population, the predator population is assumed to contract the disease only by
eating the prey. The mathematical model proposed in this paper shows that, despite
the infectious disease persisting in the predator population, the system remains “well-
defined” as none of the species would be extinct, i.e., the system was persistent. Three
epidemiological threshold quantities were identified for the model [6].

The outbreak of the COVID-19 pandemic has unwrapped a few direct applications
of the Lotka-Volterra model. New research from Mohammed et al. [12] utilized frac-
tional derivatives to “provide more adequacies in estimating the natural behaviors of
the model” [12]. This is because the non-integer derivatives provide smaller incre-
mental changes which improve the accuracy of the results as a whole: “The existence
and boundedness of the non-negative solution of the fractional model [is] proved” and
“the local stability [of the solutions are] also discussed based on Matignon’s stability
conditions” [12].

Meanwhile, a similar application of the Lotka-Volterra model is presented in re-
search by Okuonghae & Omame [14], where they first seek predicative tools to obtain
the constants. Then, by numerical simulations, they show the effect of control mea-
sures to reveal the mathematics behind “decreasing the incidence (and prevalence)
of COVID-19”, with Lagos, Nigeria as a sample. The researchers used the common
control measures of social distancing, the usage of face masks, and case detection via
contact tracing and subsequent testings. Their results show that “if at least 55% of the
population comply with the social distancing regulation with about 55% of the popu-
lation effectively making use of face masks while in public, the disease will eventually
die out in the population” [14].
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3.3 Simulation

Using the solutions found by the MATLAB command ode45, the model was presented
graphically.

Figure 1: Variations in predator/prey populations over time

Figure 1 illustrates changes in the predator and prey populations against time and
two sinusoidal curves out of phase are observed.

Figure 2: Phase plot of predator/prey populations

Figure 2 is a phase plot of predator populations against prey populations to com-
pare how their numbers change relative to each other. It is observed that the popula-
tions oscillate on a closed ellipse around the fixed point.
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Figure 3: Phase plot of predator/prey populations with varying initial population sizes

Figure 3 is a more general phase plot that demonstrates the effects of varying initial
population sizes of both species.

4 Discussion

While appointing the Lotka-Volterra model to predict population dynamics of COVID-
19 may have its merits, there are a few limitations of the model to consider. The first
assumption in this investigation, dx

dt
∝ x, is not realistic in this application simply be-

cause there are other causes of death for COVID-19 susceptible individuals, which
includes but is not limited to, natural causes, other infectious viruses or diseases, and
accidents.

Furthermore, the second assumption in this investigation, dy
dt

∝ −y, may also seem
impractical. New research suggests that Omicron, a variant of COVID-19, may have
human-to-animal transmissions, demonstrating that the infected individuals (preda-
tor) do not survive solely on the susceptible individuals (prey) [7]. However, research
from the Centers for Disease Control and Prevention (CDC) shows that “based on the
available information to date, the risk of animals spreading COVID-19 to people is con-
sidered to be low.”; therefore, the system will not be influenced by outside factors and
will remain unaffected [3].

The third assumption in this investigation is only permitted by the sixth assump-
tion, proposing that there is no immunity against COVID-19, which may be supple-
mented by viral mutations of SARS-CoV-2. While unrealistic in the short term, stud-
ies from Maragakis and Kelen [10] show that “natural immunity to the coronavirus
weakens (wanes) over time”, suggesting that these assumptions may prove to be prac-
tical [10].
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The seventh assumption in this investigation is not realistic because it is rarely ac-
curate; it is made to simplify the model.

In terms of the results presented here, there are also several limitations to take into
consideration. The first solution, Equation 5, indicates a state of equilibrium where
both populations, predator and prey, are extinct. This circumstance, albeit possible, is
highly improbable. Another limitation that arises from the first solution is the ability
of the prey population to “bounce back even when subjected to extremely low popu-
lation numbers” [2]. Known as the “atto-fox problem”, this is a common problem that
appears in other simplified biological models [13].

Moreover, the second solution, Equation 6, indicates a second state equilibrium
where both populations are equal to the reciprocal of the interaction coefficients. These
values are far more likely to transpire than Equation 5; however, scientists may cur-
rently find difficulties in calculating the parameters that describe the interaction of the
two species due to a lack of available information.

5 Conclusion

In this paper, the Lotka-Volterra model is introduced in an epidemiological applica-
tion. Two solutions and their eigenvalues are solved to understand that one solution
is an unstable saddle point and the other solution is a stable center for closed orbits.
Existing literature surrounding the topic is reviewed and the limitations of the model
in terms of predicting the population dynamics of COVID-19 are evaluated. A future
outlook for this research project may explore different models to find the most appro-
priate epidemiological representation. Furthermore, the implications of individuals
gaining immunity from COVID-19 through newfound vaccinations on the model may
be investigated.

Overall, despite some of its relatively unrealistic characteristics, the Lotka-Volterra
model can be used to predict the basic dynamic behaviour of COVID-19.
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