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1 Introduction

The ability to forecast potential fluctuations of asset prices is critical to maintaining the
stability of the world economy. When asset prices decline greatly without warning,
banks, pension funds, consumer savings, and in some cases even governments them-
selves are exposed to significant losses. Research to improve models that capture stock
price volatility has been a major focus of economists ever since Eugene Fama published
the random walk theory for describing market prices in 1965. In the last two decades,
research in the field of econophysics, the intersection of economics with quantitative
techniques from physics, has generated models that greatly improved the predictabil-
ity of asset price fluctuations through historical data. One such approach, using Lévy
Stable distributions, has been demonstrated to have a high predictive ability of extreme
market events, including the financial crisis of 2008. This paper first will investigate
Lévy Stable distributions, how they can be fit to stock market return data, and the tech-
niques utilized to convert these distributions into predictive indicators of stock market
crashes. Additional analysis extends recent research to the 2020 stock market crash to
further investigate the predictive ability of the Lévy distribution parameters. The re-
sults demonstrate that the Lévy distribution parameters changed significantly before
the major part of the 2020 stock market crash, confirming their value as a predictive
indicator of extreme market events.

2 History

The history of financial markets is rich with stories of boom and bust cycles, instances
where markets depart from “normal” behaviour during cycles of high volatility. The
consequences can be disastrous, from wiped out retirement savings to bank failures
and even periods of recession. The practice of market analysis is of critical importance
to understanding financial risks and protecting individuals, financial institutions, gov-
ernments, and the financial system itself from ruin. Attempting to predict extreme
market events in advance may prove to be challenging, but establishing a framework
for quantifying the likelihood of stock market movements is of utmost importance to
maintaining the stability of critical financial market banking institutions.
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Early methods of stock market analysis

Prior to the 1960s, stock market analysis was largely conducted within two main frame-
works: technical and fundamental analysis. Technical analysis is based on the belief
that historical patterns repeat themselves [1]. Technical analysts first develop a fa-
miliarity with different types of historical price fluctuations and attempt to identify
instances of repeating patterns early in their development. From a statistical stand-
point, this method incorporates an assumption of price dependence whereby subse-
quent prices are determined by preceding patterns [1]. Fundamental analysis, in con-
trast, is based on the assumption that all securities have an intrinsic value based on
their earning potential. Fundamental analysts attempt to estimate the value of securi-
ties based on financial statements, competitors, and the market, and also assume that
the prices of securities trend towards their intrinsic value [2].

During the modern digital age in the mid 20th century, research enabled by devel-
opments in computing power demonstrated serial correlation among stock prices to
be near zero and thus established the independence of stock market returns from their
historical performance [3]. This result contradicts the core assumption of charting anal-
ysis which assumes that prices follow patterns based on recent fluctuations.

Subsequently, economist Eugene Fama popularized an alternative theory for the
movement of stock-market prices in his 1965 paper “Random Walks in Stock-Market
Prices” [3]. The random walk theory first assumes that all available information is
known by market participants and thus that the current values of stocks are approx-
imately equal to their intrinsic values [3]. Subsequent price fluctuations are then de-
termined by the introduction of new information which is immediately incorporated
into security prices [3]. Under this framework, new information is unpredictable and
random, and security prices behave randomly and have no dependence on their his-
torical values [3]. Fundamental analysis remains important to stock market analysis
under the random walks model, as those analysts who are more skilled at assessing
the true intrinsic value of a security relative to the market as a whole will likely have
more investment success.

Development of portfolio theory

Succeeding work of economists focused on developing portfolio strategies to maxi-
mize profit for a certain amount of risk. Nearly all of the research leading up into
the early 1990s relied on the core assumption that stock market returns followed a
Gaussian normal distribution [4]. The normal distribution has many convenient char-
acteristics lending to a simplicity of calculations, such as the sum of multiple normal
distributions remaining normal, with established formulae for the resulting mean and
variance. These calculational efficiencies led to a series of important breakthroughs in-
cluding modern portfolio theory, the capital asset pricing model, and the Black-Scholes
option pricing theory that revolutionized investing and risk management during the
second half of the 20th century [4, 5]. However, the normal distribution, underpinning
the calculations for all of these techniques, significantly underestimates the probabili-
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ties of extreme market events [6]. In other words, the tails of the normal distribution are
not fat enough to accurately estimate the frequency of large fluctuations in price move-
ments in the real world. This underestimation introduces risk-management challenges,
and as the prevailing theories do not assign accurate likelihoods to large movements
in asset prices, financial institutions become exposed to greater levels of risk of unpre-
dictable instances of failure. The traditional quantification of stock market variation
has fallen short in this area, leaving the investigation of an important area of research
incomplete for decades.

The emergence of econophysics and the Lévy stable distribution

At the end of the 20th century, physicists began to focus research efforts on stock prices
and the economy, together inventing the field of econophysics. Econophysics was first
introduced in a paper by Stanley et al. [7] in 1996. The term econophysics generally ap-
plies to any investigation of economic problems by physicists [8]. The main objective of
the field is to parameterize stock price movements by applying models from statistical
physics. Physicists have investigated a large number of diverse frameworks to model
the stock market return’s distribution function [8]. One approach, called quantum
finance, translates particle motion into wave functions to represent stock price move-
ments [9], and another proposes modeling stock price movements as energy releases,
which cause prices to change as if traversing an electrostatic field [10]. Econophysi-
cists have even investigated the question of whether or not the market has “memory”
and how that could influence returns [11]. Finally, the Lévy Stable distribution, which
will be discussed in this paper, has been shown by numerous academic research pa-
pers to fit the empirical data of stock market returns well, unlike the Gaussian normal
distribution under which much of modern finance theory is based.

The Lévy distribution was first researched by the Italian economist Vilfredo Pareto
during his analysis of the distribution of income in the early 20th century [12]. French
mathematician Paul Lévy greatly expanded the research of the distribution in the 1920s
while investigating how identically distributed independent random variables behave
when added together [13]. A defining characteristic of the Lévy distribution is that a
sum of random variables distributed according to a Lévy distribution is itself a Lévy
distribution [13]. One major inconvenience of the Lévy distribution lies in the fact that
its probability density function, the traditional means of analysing a probability distri-
bution, is not able to be expressed in a closed-form formula [13]. Despite the lack of a
closed-form probability density function, physicists were able to analyze the distribu-
tion’s applicability to stock market and other data sets using computationally intensive
methods aided by computers. Recent research has demonstrated that changes in val-
ues of the Lévy distribution parameters are extremely predictive of market crashes,
including the Great Depression, financial crisis of 2007-2008, and 1987 crash [14, 15].
In this paper, Lévy distributions will be compared to the standard normal distribution,
applied to a large period of Standard and Poor’s 500 (S&P 500) Index returns, and be
assessed for their predictive ability of the 2020 stock market crash after the onset of
COVID-19.

3



3 The Lévy stable distribution and methodology

The Lévy Stable Distribution

All Lévy distributions can be described by four parameters:

stability α ∈ (0, 2]

skewness β ∈ [−1, 1]

scale γ ∈ [0,∞)

location δ ∈ (−∞,∞).

The Lévy distribution has a probability density function

f(x) =
1

2π

∫ ∞

−∞
ϕ(k)eixkdk (1)

where
ϕ(k) = eiδk−|γk|α

(
1+iβ sgn(k)ω(α,k)

)
(2)

and

ω(k, α) =

{
tan πα

2
α ̸= 1

2
π
ln |k| α = 1 .

(3)

As the integral in (1) cannot be evaluated without using numerical integration,
there is no simpler expression for the probability density function. Special cases of
the Lévy distribution with defined parameters include the Cauchy distribution where
α = 1 and β = 0 and the Gaussian normal distribution α = 2 and β = 0 [14]. Note that
k is not a parameter of the Lévy distribution itself, but does play a key role in the de-
scription of the density function through ϕ(k), which is referred to as the characteristic
equation.

Comparing the Lévy distribution to the normal distribution

By comparing the probability density functions of the Gaussian normal distribution to
Lévy distributions with various factors, the key differences in the distributions are able
to be examined. It is not possible to easily graph the shape of a Lévy distribution due
to the complexity of its probability density function. Numerical integration methods
are required to produce the probability of each individual point along the x-axis in the
interval (−∞,∞). An alternative approach, as used in this paper, is to use a computer
to generate a large number of random samples from a Lévy distribution, and then
convert the data set into a probability density function graph. Larger sample sizes
produce smoother graphs at the expense of increased computational resources.
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In order to make a comparison graph, 100,000 sampled random values from the
normal distribution and Lévy distribution were generated. The programming lan-
guage R was used to generate the values. The rnorm() function in the stats pack-
age, maintained by R Core Team, was used to generate the values from the normal
distribution [16]. The rstable() function in the stabledist package was used to
generate the values from the Lévy distribution [17]. Figure 1 displays these values as
generated probability density functions for both the standard normal and Lévy distri-
butions, where α = 1.6, β = 0, γ = 1, δ = 0. The stability parameter α was set to
1.6 as it typically is the result when fitting a Lévy distribution to stock market returns.
The skewness β and mean δ were set to 0 and the scale factor γ was set to 1 to enable a
direct comparison to the normal distribution with mean zero and standard deviation 1.

Figure 1: 100,000 sample probability density functions for standard normal and stable
α = 1.6 distributions.

Fitting a Lévy stable distribution to S&P 500 stock market returns

Analysis of historical stock index returns is typically conducted by economists using
logarithmic returns rather than typical percentage returns [6]. Logarithmic returns
have the advantage of uniform measurement of price movement in both the positive
and negative direction [18]. For example, when a stock moves from $100 to $125 and
then back to $100, percentage returns measure that movement as +25% and -20%, while
logarithmic returns are the same at ±22.3%.
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Once a series of price data is collected, daily logarithmic returns, rt, can be calcu-
lated by subtracting the logarithms of successive prices, where pt equals the stock price
on day t:

rt = ln pt − lnpt−1 = ln
pt
pt−1

. (4)

The daily percentage return on day t is thus equal to ert − 1.
In order to determine the particular Lévy distribution that provides the best de-

scription of stock returns, a method that estimates the distribution parameters based
on a time series of logarithmic return information is needed. One approach, which is
used in this paper, was developed by Ioannis Koutrouvelis in 1980. The Koutrouvelis
algorithm entails rearranging the characteristic function ϕ(k) defined in (2) of the Lévy
distribution into the following equations [13, 19]:

ln
(
− ln |ϕ(k)|2

)
= ln (2γα) + α ln |k| (5)

and
arctan

Imϕ(k)

Reϕ(k)
= γk + βγα

(
tan

πα

2

)
sgn(k)|k|α (6)

where
Imϕ(k) = e−|γk|α sin

(
δk + |γk|αβ sgn(k) tan

πα

2

)
(7)

and
Reϕ(k) = e−|γk|α cos

(
δk + |γk|αβ sgn(k) tan

πα

2

)
(8)

where Imϕ(k) and Reϕ(k) are the imaginary and real parts of (2).
In order to estimate the parameters, ϕ(k) is calculated based on an initial guess for

each of the four parameters and the observed stock market returns for a range of val-
ues of k. (5) is then used to run a two-factor regression to determine the first iteration
of values for α and γ. Next, (6) is used to perform a second two-factor regression to
determine the first iteration of values for β and δ. The initial iteration of distribution
parameters is then tested against the observed stock market returns. If the distribu-
tion does not fit the observed data within a desired tolerance, then the procedure is
repeated with the newly determined parameters as the next initial guess. Once sat-
isfactory values for the parameters are reached, the best fit Lévy distribution for the
stock market return data has been determined [19].

Lévy distribution parameters that model the S&P 500, which represents a signif-
icant portion of the overall market capitalization of the stock market in the United
States, were calculated using the Koutrouvelis method. Closing values of the S&P 500
Index were obtained from December 31, 1999 to November 30, 2021 from Yahoo Fi-
nance [20]. A time series of daily logarithmic returns rt was created for t from January
3, 2000 to November 30, 2021. There are 5,514 data points in the return time series rep-
resenting approximately 21 trading days per month over the 263 month period to be
tested. The stableEstim package within the R programming language includes the
Koutrouvelis iterative regression algorithm and was used to determine the parameter
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Lévy Parameter Koutrouvelis Regression Result
α 1.536138
β -0.311556
γ 0.005644246
δ 0.001723908

Table 1: Koutrouvelis Regression Parameter Values

values for a Lévy distribution against the S&P 500 data [21]. After uploading the data
into R-Studio, the Koutrouvelis regression was executed with the results in Table 3.

The α parameter of 1.54 is consistent with the expected result of 1.6, and the β pa-
rameter of −0.312 indicates a negatively skewed distribution, consistent with overall
average positive returns exhibited by the S&P 500 index during the observation period.
In order to further assess fit, a randomly generated sample of 100,000 Lévy distribution
points using the S&P 500 Lévy parameter results were generated to graph an approxi-
mate probability density function against the probability density curve of the observed
S&P 500 Index returns; see Figure 3. The overall peak of the empirical S&P 500 returns
is slightly higher than the fitted Lévy distribution but, importantly, the tails of the Lévy
distribution show a strong alignment with the S&P 500 data, indicating a good fit with
the actual probability of extreme market events.

Figure 2: Observed daily S&P 500 Index returns between January 3, 2000 and Novem-
ber 30, 2021 and 100,000 generated Lévy Stable Distribution Values using the parameter
values in Table 1.
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4 Results and analysis

Work recently published by Fukunaga [14] and Bielinskyi [15] has investigated the
idea that the distribution of stock market returns is inherently unstable itself and the
potential distribution of returns changes daily. In order to determine how the Lévy
distribution parameters change over time, the parameters can be calculated based on
the historical stock market returns for a fixed number of days leading up to and ending
on that day. A short window would be more responsive to changes in market condi-
tions, but a series too short will not contain enough market returns to accurately fit the
distribution. The best fit Lévy parameters calculated for each day can then be observed
over time by graphing the parameters for each day.

Both Fukunaga and Bielinskyi conducted such an analysis and presented findings
in published work in 2018 [14] and 2019 [15]. Bielinskyi’s work in particular indicates
that both the α and β parameters have the potential to predict stock market crashes.
Bielinskyi calculated and graphed the α (left) and β (right) Lévy parameters from the
1987 stock market crash through 2018 using a window of the previous 500 trading
days. A graph of the parameter values against the Dow Jones Industrial Average can
be seen in Figure 3 [15]:

Figure 3: Fitted Lévy parameters α (left) and β (right) against the Dow Jones Industrial
Average from the 1987 stock market crash through 2018 [15].

As Bielinskyi noted, α declines and β trends towards zero when the market is lead-
ing up to a crash event. For example, Figure 4 depicts α declining dramatically well
in advance of the Dow Jones Industrial Average crashing during the financial crisis of
2008 indicated by arrow 15. The parameter β also seems to trend to zero just in advance
of the 2008 financial crisis, but the movement is less significant.

In this paper using the same Koutrouvelis method, the α and β parameter values
will now be calculated for the more recent time frame including the 2020 stock market
crash. However, a 200 day window instead of a 500 day window was chosen for this
analysis in order to potentially increase sensitivity to instability in the market. Lévy
parameter values for α and β were generated from July 1, 2019 through June 30, 2020
and can be seen in Figure 4 and 5, respectively, along with the S&P 500.

As depicted in Figure 4, α declines sharply along with the S&P 500 during the
2020 market crash. However, in contrast to historical stock market crashes, there is no
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Figure 4: Fitted Lévy α parameter against the S&P 500 Index from July 1, 2019 through
June 30, 2020.

Figure 5: Fitted Lévy β parameter against the S&P 500 Index from July 1, 2019 through
June 30, 2020.
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evidence of α declining before the very beginning of the 2020 market crash, only just
after. The parameter does show a strong further decline even as the market makes an
initial rebound before a more pronounced crash in the middle of March. This means
that the main component of the market crash from March 4, 2020 to March 24, 2020 is
still well predicted by a decline in α in advance.

In addition, as shown in Figure 5, the β parameter shows strong movement to-
wards 0, indicating a less negatively skewed distribution of returns as the S&P 500
became more volatile throughout the market crash and subsequent rebound. Overall,
the α and β parameters were good leading indicators of the main crash, and could have
been used as signals of the greater market crash during the initial rebound.

5 Conclusions

The contributions of physicists to the broader topic of economic research have greatly
advanced the overall understanding of market behaviour. Through research of the
Lévy distribution, econophysics has vastly improved the understanding of tail be-
haviour in markets, which had received less focus despite its critical impact on risk
management, as the main source of economic risk lies in the tails. The distribution’s
parameters clearly have great potential as indicators of stock market crashes and fur-
ther study of their relationship to market crash events is warranted. As shown in pre-
vious research for historical stock market crashes and in this paper for the COVID-19
crash, the Lévy distribution parameters provided a signal before the market’s decline.
However, unlike historical events, α and β were not able to predict the initial market
decline of the 2020 stock market crash. Perhaps the nature of COVID-19, a catalyst
completely external to the market, reduced the predictive value of the Lévy parame-
ters in this instance. A deeper understanding of market signals available through this
methodology can potentially be of great value to investors, financial institutions, and
governments seeking to better manage risk and protect the stability and soundness of
the broader financial system.
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[13] S. Borak, W. Härdle and R. Weron, Stable distributions, in Statistical Tools for
Finance and Insurance, Springer, Berlin, Heidelberg, 2005.

[14] T. Fukunaga and K. Umeno, Universal Lévy’s stable law of stock market and its
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