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Is subtraction really the inverse of addition?

A careful look at the invertibility of operations

Rizky Reza Fauzi', Steven?, and Jonathan Hoseana®

1 Introduction

Many school-level arithmetic books [3, 6, 8, 10, 12], when discussing the concept of
subtraction, employ the sentence

“Subtraction is the inverse of addition.” (1)

Certainly, as explained in most of these books, this sentence is meant to be a shorter
and easier-to-memorise version of

“Subtraction by a number is the inverse of addition by the same number.” (2)

However, when students end up memorising the sentence (1) without sufficient aware-
ness that it actually means (2), concerns arise. Indeed, this could lead them to an im-
perfect understanding of inverse functions in their future study of higher mathematics,
since the sentence (1), in itself, uses the word inverse in an improper way.

But why exactly is the use of the word inverse in the sentence (1) improper? That is,
why is subtraction actually not the inverse of addition? In this article, we aim to answer
this question carefully. Our first step is to articulate what kind of mathematical objects
are addition and subtraction. This starting point, as we shall see, will subsequently
lead to an interesting mathematical discussion.

2 Operations and their invertibility

Both addition and subtraction are operations on the set of real numbers. An operation
is a special type of function, whose standard definition we now recall [1, 5].
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Definition 1. A function f from a set A to a set B, written f : A — B, is a mathematical
object which associates every element = € A to a unique element f(z) € B. In symbols,
we write

fiA—=B, x~ f(z).

We refer to f(x) as the image of  under f, and x as a* preimage of f(x) under f. The
sets A and B are called the domain and the codomain, respectively, of f.

For example, the function
f:{-2,0,2} = {0,1,4}, =z 2? (3)
associates every element of its domain to its square:
f(=2)=(-2%=4, f(0)=0=0, and f(2)=2>=4.

The fact that f(—2) = 4 means that the image of —2 under f is 4, and that a preimage
of 4 under f is —2. Another preimage of 4 under f is 2, since f(2) = 4.
The standard definition of an operation now follows [2, 4, 5].

Definition 2. An operation on a set A is a function from the set A x A of all ordered
pairs of elements of A, to the set A.

For example, the function
g:RxR =R, (a,b)+— max{a,b}

is an operation on the set R of real numbers, which associates every ordered pair (a, b)
of real numbers to the maximum max{a, b} of its components: a if a > b, and bif a < b.
Thus,

9(2,0) = max{2,0} =2, g¢(—2,1) =max{-2,1} =1, and ¢(0,0) = max{0,0} =0.
Now, addition and subtraction of real numbers are the functions
+:RxR—>R, (a,b)—a+b, and —:RxR—=>R, (a,b)—a—b,

respectively; they associate every ordered pair of real numbers to the sum and the
difference, respectively, of its components. Therefore, being a function, whether an
operation has an inverse’ is determined by its injectivity, surjectivity, and, ultimately,
bijectivity [1, 2, 4, 5].

4Notice that we use the indefinite article “a” here, rather than the definite article “the”, to indicate
that a codomain element need not have a unique preimage.

>Given an operation ® : 4 x A — A and an element a € A, notice the difference that exists between
the inverse of the operation @, the inverse of the element a under the operation @, and the inverses of the actions
= a®xand x — x @ a of the element a on A. Assuming existence, these are, respectively, a function
from A to A x A, an element of A, and functions from A to A.
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Definition 3. A function is injective if every element of its codomain has at most one
preimage, is surjective if every element of its codomain has at least one preimage, and
is bijective if it is both injective and surjective, i.e., if every element of its codomain has
exactly one preimage.

For example, the function f given by (3) is not injective since, as we have seen, the
element 4 of its codomain has two distinct preimages: 2 and —2. Itis also not surjective,
since the element 1 of its codomain has no preimage. By contrast, the function

h:{0,1,2} — {0,1,4}, x> 2?

is bijective: 0, 1, and 2 are the unique preimages of 0, 1, and 4, respectively.

To construct the inverse of a function, we must interchange the roles of its domain
and codomain, reversing the direction of the elements’ correspondences. Since this re-
sults in a function if and only if the original function is bijective, an invertible function
—one that has an inverse— is precisely a bijective function, i.e., one which is both injec-
tive and surjective. As functions, neither addition nor subtraction is invertible, since none
of them is injective: (1,0), (0,1) are two distinct preimages of 1 under addition, and
(1,0), (2,1) are two distinct preimages of 1 under subtraction. This, on the one hand,
already justifies why the sentence (1) is conceptually incorrect if interpreted literally.
On the other hand, it naturally motivates the following four questions concerning the
injectivity and surjectivity of an operation.

Question 1. Is there an operation which is neither injective nor surjective?
Question 2. Is there an operation which is injective but not surjective?
Question 3. Is there an operation which is surjective but not injective?

Question 4. Is there an operation which is both injective and surjective?

Question 1 is easy to answer: yes, the operation (z,y) — 0 on R. So is Question 3:
yes, both addition and subtraction on R are surjective, since for every z € R we have
x £ 0 = z, but not injective for the aforementioned reason. How about Questions 2
and 4?

3 Injective operations

Both Questions 2 and 4 concern the existence of an injective operation. This is trivial
if we allow operations on singletons, i.e., single-element sets; every such operation
is both injective and surjective. We are therefore interested only in the existence of
an injective operation on a non-singleton. Let us first assume that such an operation
@ : A x A — Aexists, and investigate some properties that & must possess.

Firstly, if A is finite, then the injectivity of @ forces |A]* = |A x A| < |A|, which
implies that A is a singleton, a contradiction. This establishes the following property.



Proposition 4. An injective operation on a non-singleton, if it exists, can only be defined on
an infinite set.

For the second property, we need the notion of an idempotent under an operation,
i.e., an element which is equal to its own square [4, page 19].

Definition 5. An element a € A is an idempotent under ® if a ® a = a.

The second property is that @ cannot induce a global idempotence, i.e., it cannot allow
every element of A to be an idempotent. Indeed, if every element of A is an idempotent
under &, then for every a,b € A we have that a®bis an idempotent, i.e., (a®b)®(adb) =
a @ b, which, by the injectivity of @, implies « © b = a and a © b = b, meaning that
a = b. This implies that A is a singleton, a contradiction. We have therefore proved the
following property.

Proposition 6. An injective operation on a non-singleton, if it exists, cannot allow every
element to be an idempotent.

Let us next show that @ cannot be associative or commutative. If it is, then for
every a € A we have a @ (a © a) = (a ® a) & a which, by injectivity of &, implies
a ® a = a. That is, every element of A is an idempotent under @, contradicting our last
proposition. Therefore, we have the following.

Proposition 7. An injective operation on a non-singleton, if it exists, is neither associative nor
commutative.

Furthermore, if @& possesses a left identity [4, page 25]: an element e € A such that
e®a = afor every a € A, then for every a € Awehavee ® (a ©e) = a® e, and so
e = a, by injectivity, implying that A is a singleton, a contradiction. A similar argument
applies in the case of © possessing a right identity.

Proposition 8. An injective operation on a non-singleton, if it exists, has neither left nor right
identity.

Finally, suppose that & obeys the Latin square property [4, 5]: for every a,b € A there
exist x,y € Asuchthata® 2 = band y ® a = b. Then, for every a € A there exist
x,y € Asuchthata = a ® 2 = y ® a, which means that x = y = a by injectivity, and so
a ® a = a. That is, every element of A is an idempotent under @, a contradiction.

Proposition 9. An injective operation on a non-singleton, if it exists, cannot obey the Latin
square property.

Summarising our propositions, an injective operation on a non-singleton, if it exists,
must be defined on an infinite set, not allow a global idempotence, be neither associa-
tive nor commutative, have no identity, and not satisfy the Latin square property. Such
an operation, therefore, must be rather pathological! What could be an example?
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4 Examples of injective operations on non-singletons

Let us give three examples of an injective operation on a non-singleton, and hence
answers to Questions 2 and 4. Our first example —the simplest one— is number-
theoretical; its injectivity relies on the uniqueness of prime factorisations, which is
guaranteed by the fundamental theorem of arithmetic [9, Theorem 3.13].

Theorem 10. Every integer greater than 1 has a prime factorisation —an expression of the
integer as a product of one or more primes— which is unique up to reordering of the factors.

Thus, the equations
23" =12=2°3" and = 2°3" =60 =2°3'5"

have the unique positive-integer solution (a,b) = (2, 1) and no positive-integer solu-
tion, respectively.

Example 11. Fix two distinct primes p and ¢. Define the following operation on the set
N of positive integers:
®:NxN-=N, (a,b)—p'g.

Then, any codomain element whose only prime factors are p and ¢, has a unique
preimage under @, by the uniqueness of prime factorisations. On the other hand, any
codomain element which is divisible by a prime other than p and ¢, has no preimage
under @. This shows that @ is injective but not surjective. We have therefore provided
a positive answer to Question 2.

Our second example uses the concept of a binary tree, a special type of directed graph.
Let us first recall the necessary definitions [1, 7].

Definition 12. A graph is an ordered pair G = (V, E) consisting of a finite set V' of
vertices and a set I of edges: unordered pairs of distinct vertices. A directed graph is an
ordered pair G = (V, E) consisting of a finite set |/ of vertices and a set E of arcs: ordered
pairs of distinct vertices. By treating every arc of a directed graph as an edge, we obtain
a graph, which is the underlying graph of the directed graph.

For example, G; = ({1,2,3,4},{(1,2),(1,4),(3,1),(4,3)}) is the directed graph
which can be drawn as the leftmost diagram in Figure 1: each vertex is drawn as
a circular node, and each arc (v;,v2) as an arrow from v; to ve. In the same fig-
ure, Go = ({1,2,3,4}, {{1,2},{1,4}, {3, 1}, {4, 3}}) is a graph, which is the underlying
graph of G;.

Definition 13. Let G = (V, E) be a directed graph. A directed subgraph of G is a directed
graph G’ = (V' E') such that V' C V and E' C E. If V' C V, then the directed subgraph
of G induced by V' is G[V'] = (V',{(v1,v2) € E : v1,v5 € V'}), obtained from G by
retaining only all vertices in V'’ and all arcs whose components are both in V".
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Figure 1: Examples of graphs and directed graphs.

For the directed graph G; in Figure 1, we have that G,[{1,2,4}] =
({1,2,4},{(1,2),(1,4)}) = Gs; that is, G5 is the directed subgraph of GG; induced by
the vertex subset {1, 2,4}.

Definition 14. Two directed graphs G = (V, E) and G’ = (V', H') are isomorphic, written
G = (, if there is a bijective function f : V' — V' such that (v, v2) € E if and only if
(f(01), f(v2)) € E.

Intuitively, two graphs are isomorphic if one of them can be transformed to the
other by merely renaming the vertices. For example, the directed graphs G5 and
G, in Figure 1 are isomorphic, i.e., G5 = G4, via the bijective function —the vertex-
renaming— givenby 1 — 2,2 +— 3,and 4 — 1.

Definition 15. In a graph G = (V, E), a path is a finite sequence (vy, vo, ..., v,) of ver-
tices such that {vy, v2}, {va, v3},. .., {va—1,v,} € E. The sequence is called a cycle if, in
addition, {v,,v1} € E. The graph G is connected if there is a path beginning and ending
at every pair of its vertices. The graph G is a tree if it is connected but has no cycle.

Thus, the graph G5 in Figure 1 is connected. In this graph, the sequences (4, 3,1, 2)
and (1,4, 3) are both paths. Since the latter (but not the former) is a cycle, G, is not a
tree.

Definition 16. In a directed graph G = (V. E), the in-degree of a vertex v; € V is the
number of vertices v; € V such that (v;,v;) € E. The out-degree of the same vertex is
the number of vertices v; € V such that (v;,v,) € E.

In the graph G, in Figure 1, the in-degrees of the vertices 1, 2, 3, and 4 are all 1,
while their out-degrees are 2, 0, 1, and 1, respectively.

Definition 17. A directed graph is a directed tree if its underlying graph is a tree. A
directed tree is a rooted tree if there is a unique vertex, called the root, with in-degree 0,
and the in-degree of every other vertex is 1. In a rooted tree, the level of a vertex is the
length of a path connecting the root and that vertex in the underlying graph, and an
intermediate vertex is a vertex having a non-zero out-degree. Finally, a rooted tree is a
binary tree if the out-degree of every intermediate vertex is at most 2.
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Thus, the graph G5 in Figure 1 is a binary tree with root 1, and no intermediate
vertices. The levels of the vertices 1, 2, and 4 are 0, 1, and 1, respectively.

Example 18. Let 7 be the set of all binary trees with non-empty vertex sets, whose
vertices are labelled with consecutive natural numbers starting from 1 by increasing
level, and for each level, from left to right®. Figure 2 displays some examples of trees

in7.
Ts Ty

®

Figure 2: Examples of trees in 7.

Let us now define an operation & on 7. Given 73,7, € T, construct 7 & T, as
follows. First, place the binary trees 7 and 7, side by side. Then, add a new vertex
which is joined with an arc to the root of 77, and with another arc to the root of 75. This
gives a new binary tree, whose vertices are finally relabelled according to the above
convention. For example, if 7} and 7, are as in Figure 2, then T} & 75 is the tree in
Figure 3. More formally, for every 11,7, € T, T @ T is the unique binary tree 7" in
T having the property that {{1}, V,V’} is the only partition of the vertex set of 7" such
that2 e V,3e V', T[V]| =T, and T[V'] = Ts.

Figure 3: The tree T} @ T3, where T} and 75 are as in Figure 2.

®This is the so-called shelling order [11].



Now, let T' = (V, E) € T. If the out-degree of the root v of T"is equal to 2, as with T}
and 75 in Figure 2, then T" has a unique preimage under @, which is the ordered pair
consisting of the two maximal connected directed subgraphs of T'[V \ {v}]. Otherwise,
the out-degree of v is less than 2, as with 73 and 7} in Figure 2; in this case 7" has
no preimage under @. Thus, the operation @ is injective but not surjective, thereby
providing another answer to Question 2.

Our final example is defined on the set N of non-negative integers, exploiting the
decimal representations of integers.

Example 19. For every z,y € N, define x @ y to be the positive integer constructed by
writing the digits of z and of y from left to right in alternation. For example, 123®456 =
142536. If the number of digits k and ¢ of the operands are not equal, then we first add
k — (¢ zeros in front of the smaller operand. Thus, to compute 123 & 56, we regard 56 as
‘056, obtaining 102536. Similarly, to compute 23 @ 456, we regard 23 as ‘023", obtaining
‘042536, i.e., the integer 42536.

The definition of @ can be extended to the set N, of non-negative integers. If exactly
one of the operands is 0, we regard this zero as a string of as many zeros as the number
of digits of the other operand. That is, to compute 123 ® 0 and 0 & 123, we regard 0
as ‘000", obtaining, in the former case, 102030, and, in the latter case, ‘010203’ i.e., the
integer 10203. Finally, define 0 @ 0 to be 0.

Written formally, for every z,y € Ny, define

(b 161 Gp—2bm—2 - - - a1byagby ifx,y A20and n =m;
b 00,106, o - - - 0by 1 1anbpay, 10,1 - - - a1bragby ifz,yA0and n < m;
~ J an0an—10a, 20 - - @y 10000 @y —1bip—1 - - arbragby, if z,y # 0and n > m;
Y = 0b. 00, 0b;0%. ifr—0andy £0:
a,00,_10a,_20 - - - a10a0 , ifr#0andy=0;
L0, ifr=y=0,

where, in every case in which z # 0, we write

T = Gplp—-1ap—2 - A140 ,

where the a;s are the decimal digits of z, and in every case in which y # 0, we write

Yy = binbrm—1bm—2 - - - bibo ,

where the b;s are the decimal digits of y.”

The well-definedness and the injectivity of @ both follow immediately from the
uniqueness of decimal representations. To prove its surjectivity, let z € N;. We seek
to write z = = @ y for some x,y € Ny. If z = 0, then 2 = 0 4 0, and we are done.

"Thus, the overlined expressions are not products.



Now, suppose z # 0 and write 2 = C,Cr_1Cr_2Ck_3 - - - C3C2C1Co. 1TwoO cases need to be
considered.

CASE I: kis odd

In this case, k = 2¢ 4 1 for some ¢ € Ny, SO 2 = Gy 1C2¢C20_1C20_32 - - - C3C2C1 Co.

If cop =cop0 =+ =co=co=0,then z = Cy1Co—1Cor—5 - - - c3¢1 D 0.

Otherwise, ¢; # 0 for some i € {0,2,4,...,2¢}. Assume that this i is maximal. Then

2 = Cg0410¢20-10¢2¢ 30 - - - ¢1120¢i 1 1¢i¢51¢i 2 - - - c302€1Co

= C9¢41C2p—1Co¢—3 "+~ C3C1 B C;Ci_o -+~ CaCp .

CASE II: k£ is even

In this case, k = 2¢ for some ¢ € Ny, SO 2 = C2¢Car_1C2r—2C2¢—3 - - - C3C2C1Co-

Ifcop 1 =cCoy5=--=c3=c1 =0, then 2 = 0D CyyCar_2Car_1 - C2Co.

Otherwise, ¢; # 0 for some i € {1,3,5,...,2¢ — 1}. Assume that this 7 is maximal. Then

2 = C200cp20¢20 4+ - 0ciy1¢i¢i1Ci2 - - - C3C2C1Co

= CijCij—o - CaCp " -+ C3C1 D CopCoy—_2Coy—_4 - C2Cp .

Thus, the operation © on Nj is both injective and surjective, and thus invertible,
thereby providing an answer to Question 4. On the other hand, notice that the same
operation @ defined on N is injective but not surjective, since, e.g., every single-digit
integer has no preimage; this provides yet another answer to Question 2.

Notice that the operation in the last example can be defined more generally by re-
placing decimal representations with base-r representations [9, section 2.2], for any fixed
r € Nwithr > 2.
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