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A potpourri of pretty identities involving Catalan, Fibonacci
and trigonometric numbers

Enoch Suleiman1 and B. Sury2

1 Introduction

Apart from the binomial coefficients which are ubiquitous in many counting problems,
the Catalan and Fibonacci sequences seem to be appear almost as frequently. The Fi-
bonacci numbers are defined by the linear recursion Fn+2 = Fn+1 + Fn beginning with
F0 = 0 and F1 = 1. For the labyrinth of avatars of the Catalan numbers Cn = 1

n+1

(
2n
n

)
,

the reader is encouraged to see Richard Stanley’s lovely book [6] for more than two
hundred interpretations. Two well-known interpretations of the Catalan numbers are
as Dyck paths (lattice paths) going in right and upwards steps from (0, 0) to (n, n) and
never going above the line y = x, and as the number of ways to connect 2n points on a
circle via non-intersecting lines.

In this note, we start by obtaining some identities for sums involving the Catalan
sequence. In addition, we discuss the beautiful binomial transform which does not
seem to be as well known as it should be. These simple methods allow us to obtain
several pretty identities involving Fibonacci numbers, Catalan numbers and trigono-
metric sums. As an appetizer, we list some of the identities proved in this article:

n∑
k=0

(−1)k
(
n

k

)
2n−kCk+1 =

{
0 n is odd
Cn/2 n is even

;

∑
j≥1

1

Cj

= 1 +
4π

9
√
3
;

(−1)n =
n∑

k=0

(−1)k
(
n

k

)
Fn+k+1 ;

sin
2π

n
=

n∑
k=0

(−1)k
(
n

k

)
2n−k sin

2π(k + 1)

n
cosn−k 2π

n
.
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2 Linear recursion for Catalan numbers

An identity for the Catalan numbers Cn = 1
n+1

(
2n
n

)
was discovered by Touchard in 1928;

it asserts that

Cn =

⌊n−1
2

⌋∑
k=0

(
n− 1

2k

)
2n−1−2kCk . (B)

Note that this recursion involves the “bottom half” of the sequence C0, . . . , Cn−1.
More generally, let us consider for each integer a ≥ 2 the generalised Catalan numbers

Ca(n) :=
1

(a− 1)n+ 1

(
an

n

)
.

It is remarkable that these numbers satisfy a linear recursion (also observed in [8]).
In particular for any a ≥ 2, the numbers Ca(n) can be defined recursively by the value
Ca(0) = 1 and, for all n ≥ 1, the linear recursion

Ca(n) =

⌊(a−1)n+1
a

⌋∑
k=1

(−1)k−1

(
(a− 1)(n− k) + 1

k

)
Ca(n− k) . (A)

In particular, the case a = 2 gives the usual Catalan numbers Cn by the linear recursion

Cn =

⌊n+1
2
⌋∑

k=1

(−1)k−1

(
n− k + 1

k

)
Cn−k . (A’)

The linear recursion (A) can be proved by using the forward difference operator ∆ which
we briefly recall now. Define a new function ∆f for any function f on R by

(∆f)(x) := f(x+ 1)− f(x) ,

and successively define ∆k+1f = ∆(∆kf) for each k ≥ 1. It is easily proved by induc-
tion on n that

(∆nf)(x) =
n∑

k=0

(−1)k
(
n

k

)
f(x+ n− k) .

We note that if f is a polynomial of degree d, then ∆f is also a polynomial and has
degree d− 1. In particular, ∆Nf is the zero function 0 when N > d, so (∆Nf)(0) = 0.

To see how the recursion follows from the difference operators, first rewrite (A) as

⌊(a−1)n+1
a

⌋∑
k=0

(−1)k−1

(
(a− 1)(n− k) + 1

k

)
Ca(n− k) = 0 .

In other words, using Ca(n− k) = 1
(a−1)(n−k)+1

(
a(n−k)
n−k

)
, we are claiming that∑

k≥0

(−1)k−1

(
(a− 1)(n− k) + 1

k

)
1

(a− 1)(n− k) + 1

(
a(n− k)

n− k

)
= 0 .
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Expanding the binomial coefficients(
(a− 1)(n− k) + 1

k

)
=

(
(a− 1)(n− k) + 1

)
!

k!
(
(a− 1)n− ak + 1

)
!

and (
a(n− k)

n− k

)
=

(
a(n− k)

)
!

(n− k)!
(
(a− 1)(n− k)

)
!

and multiplying and dividing by n!, the above equation becomes simply

− 1

n

∑
k≥0

(−1)k
(
n

k

)(
a(n− k)

n− 1

)
= 0 .

The function f(x) = ax(ax − 1) · · · (ax − n + 2) is a polynomial of degree n − 1 < n.
Therefore,

(∆nf)(x) =
∑
k≥0

(−1)k
(
n

k

)
f(x+ n− k) = 0 .

This gives

(∆nf)(0) =
∑
k≥0

(−1)k
(
n

k

)(
a(n− k)

n− 1

)
= 0 .

This is the asserted recursion (A). 2

Note that the expression (A’) involves the “top half” of the number C0, . . . , Cn. By
combining it with the identity (B) which involves the “bottom half” of those numbers,
we immediately obtain a new identity. We state it separately for odd and even n for
the sake of clarity:

Lemma 1.

(2n+ 1)C2n =
n−1∑
r=0

(
2n

2r

)
22n−2rCr + (1− (−1)n)Cn−

n−1∑
k=1

(−1)n+k

(
n+ k + 1

n− k + 1

)
Cn+k (C)

2nC2n−1 =
n−1∑
r=0

(
2n− 1

2r

)
22n−1−2rCr +

n−2∑
k=0

(−1)n+k

(
n+ k + 1

n− k

)
Cn+k . (D)

Proof. Consider (A’) and (B) respectively, for an even integer 2n:

C2n =
n∑

k=1

(−1)k−1

(
2n− k + 1

k

)
C2n−k ;

C2n =
n−1∑
k=0

(
2n− 1

2k

)
22n−1−2kCk .
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Equating the right hand sides and writing on one side the term 2nC2n−1 corresponding
to the largest suffix 2n− 1, we have

2nC2n−1 =
n−1∑
r=0

(
2n− 1

2r

)
22n−1−2rCr +

n−2∑
k=0

(−1)n+k

(
n+ k + 1

n− k

)
Cn+k .

This is the identity (D). Similarly, taking 2n+1 in place of n in the identities (A’) and (B),
we obtain (C). 2

3 Binomial transform

Let a0, a1, . . . be a sequence of numbers and define a sequence of numbers b0, b1, . . . by

bn =
n∑

k=0

(
n

k

)
ak

Then, for all n ≥ 0,

an =
n∑

k=0

(−1)n−k

(
n

k

)
bk . (E)

This identity is the inverse binomial transform and is extremely useful.
To prove (E), first use binomial expansions as follows:

xn = ((1 + x)− 1)n =
n∑

k=0

(
n

k

)
(1 + x)k(−1)n−k =

n∑
k=0

(−1)n−k

(
n

k

) n∑
r=0

(
k

r

)
xr

=
n∑

r=0

(
n∑

k=0

(−1)n−k

(
n

k

)(
k

r

))
xr .

By equating the coefficients of the powers of x on both sides of this equation, we obtain

n∑
k=0

(−1)n−k

(
n

k

)(
k

r

)
=

{
0 , r < n ;

1 , r = n .

Therefore,

n∑
k=0

(−1)n−k

(
n

k

)
bk =

n∑
k=0

k∑
r=0

(
k

r

)
ar(−1)n−k

(
n

k

)
=

n∑
r=0

(
n∑

k=0

(−1)n−k

(
n

k

)(
k

r

))
ar = an .

Thus, the inverse of the binomial transform is established. 2

More identities involving Catalan numbers can be deduced from the earlier ones using
the binomial transform. Let us apply this transform to the identity due to Touchard.
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Defining an = 1
2n
Cn

2
if n is even, and an = 0 if n is odd, and defining bn = 1

2n
Cn+1,

Touchard’s identity

Cn =

⌊n−1
2
⌋∑

k=0

(
n− 1

2k

)
2n−1−2kCk

can be expressed as

bn =
n∑

k=0

(
n

k

)
ak .

Therefore, the inverse binomial transform yields our next result:

Lemma 2.
n∑

k=0

(−1)k
(
n

k

)
2n−kCk+1 =

{
0 n is odd;
Cn

2
n is even.

(1)

4 Polynomial identities and Fibonacci numbers

Akin to the binomial transform, we have the following result whose proof we leave as
a challenging exercise - it is similar to the proof of the inverse binomial transform:

Lemma 3. Let a0, a1, . . . and b0, b1, . . . be sequences of complex numbers related by the identity

bn =
∑
k≥0

(
n− k

k

)
ak

for all n ≥ 0. Then

an =
n∑

k=0

(−1)n+k

(
n

k

)
bn+k .

Using this transform and the polynomial identity∑
k≥0

(−1)k
(
n− k

k

)
(XY )k(X + Y )n−2k = Xn +Xn−1Y + · · ·+XY n−1 + Y n ,

which follows easily by induction, as noted in [7], we obtain the next result.

Lemma 4.

(XY )n =
n∑

k=0

(−1)k
(
n

k

)
(Xn+k +Xn+k−1Y + · · ·+ Y n+k)(X + Y )n−k .

Proof. Set an = (−XY/(X + Y )2)n and bn = Xn+Xn−1Y+···+Y n

(X+Y )n
in Lemma 3. 2

Here are some consequences of Lemma 4.
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Corollary 5.

(−1)n =
n∑

k=0

(−1)k
(
n

k

)
Fn+k+1

1 =
n∑

k=0

(−1)k
(
n

k

)
(n+ k + 1)2n−k

sin
2π

n
=

n∑
k=0

(−1)k
(
n

k

)
2n−k sin

2π(k + 1)

n

(
cos

2π

n

)n−k

.

Proof. It is well known that Fn = αn−βn

α−β
where α, β are the roots of x2 − x − 1 = 0

and must satisfy αβ = −1 and α + β = 1. Substituting X = α, Y = β in Lemma 4, we
immediately obtain the first identity.
For the second identity, substitute X = Y = 1 in Lemma 4.
Finally, the substitution X = e

2πi
n , Y = e−

2πi
n yields the last identity. 2

5 Harmonic Sums

We give an identity involving harmonic numbers

Hk =
k∑

r=1

1

r
= 1 +

1

2
+ · · ·+ 1

k

that follows by an application of the binomial transform:

Lemma 6.
n∑

k=1

(−1)k+1

(
n

k

)
1

k2
=

n∑
k=1

Hk

k
. (F)

Proof. By the binomial transform, the identity (F) it follows from the identity
n∑

k=1

(−1)k+1

(
n

k

) ∑
1≤i≤j≤k

1

ij
=

1

n2
.

This identity was posed as Problem 11164 in the American Mathematical Monthly in
2005 by Dias-Barrero [2]. More generally, W. Chu and Q.L. Yan [1] proved that

n∑
k=1

(−1)k+1

(
n

k

) ∑
1≤i1≤···≤ir≤k

1

i1i2 · · · ir
=

1

nr
.

The last identity is the specialization of the following formal identity of rational func-
tions where we let x = 1 and take n− 1 instead of n:

n∑
k=0

(−1)k
(
n

k

)(
x+ k

k

)−1 ∑
0≤i1≤···≤ir≤k

1

(x+ i1) · · · (x+ ir)
=

x

(x+ n)r+1
. (♠)
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Chu proved the rational function identity; as we are unable to provide a reference
where this proof is given, we give a proof below for the sake of completeness.

Denote by L the left hand side of (♠). By the relation(
n

k

)(
x+ k

k

)−1

=

(
x+ n

n− k

)(
x+ n

n

)−1

,

we have (
x+ n

n

)
L =

∑
0≤i1≤···≤ir≤n

1

(x+ i1) · · · (x+ ir)

n∑
k=ir

(−1)k
(
x+ n

n− k

)
.

Let us now use the well-known binomial identity

n∑
k=ir

(−1)k
(
x+ n

n− k

)
= (−1)ir

(
x+ n

n− ir

)
x+ ir
x+ n

(G)

to get(
x+ n

n

)
L =

1

x+ n

∑
0≤i1≤···≤ir−1≤n

1

(x+ i1) · · · (x+ ir−1)

n∑
ir=ir−1

(−1)ir
(
x+ n

n− ir

)
.

We use (G) once again on the rightmost sum, obtaining

n∑
ir=ir−1

(−1)ir
(
x+ n

n− ir

)
= (−1)ir−1

(
x+ n

n− ir−1

)
x+ ir−1

x+ n
.

We thereby obtain(
x+ n

n

)
L =

1

(x+ n)2

∑
0≤i1≤···≤ir−1≤n

1

(x+ i1) · · · (x+ ir−2)

n∑
ir−1=ir−2

(−1)ir−1

(
x+ n

n− ir−1

)
.

Repeating this a total of r times, we finally obtain(
x+ n

n

)
L =

1

(x+ n)r

(
x+ n

n

)
x

x+ n

which immediately gives the asserted identity

L =
x

(x+ n)r+1
.

Thus, the proof is complete. 2
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6 An identity of Lehmer

Here are some more identities involving the Catalan numbers and the Fibonacci num-
bers, where the starting point is the following generating series, due to D.H. Lehmer [4],
that is valid when for |z| < 1:∑

j≥1

(4z2)j(
2j
j

) =
z2

1− z2
+

z arcsin(z)

(1− z2)3/2
.

By multiplying by 4z2 and writing t = 4z2, we have∑
j≥1

tj+1(
2j
j

) =
t2

4− t
+

t3/2 arcsin(
√
t/2)

2(1− t/4)3/2

for 0 < t < 4. The series on the left converges uniformly and we can compute its
derivative by differentiating term by term. If we do this, and substitute t = 1, then
we obtain an identity where the left-hand side is the sum of the reciprocals of the
Catalan numbers Cj = 1

j+1

(
2j
j

)
for j ≥ 1. Similarly, we may substitute t = 2, 3, 1

2
etc.

after differentiating, giving the identities below. The identities that follow from the
generating function of Lehmer are as follows:

Lemma 7.∑
j≥1

tj

Cj

=
10t− t2

(4− t)2
+

6
√
t arcsin(

√
t/2)

(4− t)3/2
+

6t3/2 arcsin(
√
t/2)

(4− t)5/2
for 0 < t < 4 ;

∑
j≥1

1

Cj

= 1 +
4π

9
√
3
;

∑
j≥1

1

jCj

=
1

3
+

5π

9
√
3
;

∑
j≥1

1

(j + 1)Cj

=
1

3
+

2π

9
√
3
;

∑
j≥1

2j

Cj

= 4 +
3π

2
;

∑
j≥1

3j

Cj

= 21 + 8
√
3π ;

∑
j≥1

1

2jCj

=
19

49
+

96

49
√
7
arcsin

1√
2
;

∑
j≥1

j

Cj

= 2 +
7π

√
3

27
.

As a corollary, we may obtain expressions for
∑

j≥1
Fj

Cj
by using the first identity above

with t = α = 1+
√
5

2
and t = −β =

√
5−1
2

, and by recalling that Fn = αn−βn

α−β
.
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For more identities involving sums where the binomial coefficients appear in the
denominator, please see [9].

More general infinite series involving the Catalan numbers in the denominator can
also be expressed as finite sums as follows. These were first discovered by C. Elsner [3]
but let us give a simpler, one-sentence proof. Consider the two infinite series∑

n≥0

1

(2n+ 1)(2n+ 3) · · · (2n+ 2k + 1)
(
2n
n

)
and ∑

n≥0

(−1)n

(2n+ 1)(2n+ 3) · · · (2n+ 2k + 1)
(
2n
n

)
as finite sums. We use the notation k!! for 1× 3× 5× · · · × (2k − 1).

Lemma 8.∑
n≥0

1

(2n+ 1)(2n+ 3) · · · (2n+ 2k + 1)
(
2n
n

) =
4

k!!

(
(−3)k

π

6
√
3
+
∑
s<k

(−1
3
)s−k+1

2s+ 1

)
;

∑
n≥0

(−1)n

(2n+ 1)(2n+ 3) · · · (2n+ 2k + 1)
(
2n
n

) =
4

k!!

(
5k√
5
log(

1 +
√
5

2
)−

∑
s<k

(1/5)s−k+1

2s+ 1

)
.

Proof. One may write

∑
n≥0

1

(2n+ 1)(2n+ 3) · · · (2n+ 2k + 1)
(
2n
n

) =
∑
n≥0

1

4nk!!

∫ π/2

0

(sin t)2k(cos t)2n+1dt

=
4

k!!

∫ 1

0

x2k

3 + x2
dx

=
4

3k!!

∑
r≥0

∫ 1

0

x2k(−x2/3)rdx

=
4

3k!!

∑
r≥0

(−1
3
)r

2k + 2r + 1

=
4

3k!!

∑
s≥k

(−3)k−s

2s+ 1

=
4

k!!

(
(−3)k

π

6
√
3
+
∑
s<k

(−3)k−s−1

2s+ 1

)
.

In the last step, we have used the arctan series to conclude that∑
s≥0

(−3)−s

2s+ 1
=

√
3
π

6
.
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Note that the summation and the integral above have been interchanged using uniform
convergence.

For the other series, the proof is similarly given as follows.

∑
n≥0

(−1)n

(2n+ 1)(2n+ 3) · · · (2n+ 2k + 1)
(
2n
n

) =
∑
n≥0

1

(−4)nk!!

∫ π/2

0

(sin t)2k(cos t)2n+1dt

=
4

k!!

∫ 1

0

x2k

5− x2
dx

=
4

5k!!

∑
s≥k

(1
5
)s−k

2s+ 1

=
4

k!!

(
5k√
5
log
(1 +√

5

2

)
−
∑
s<k

5k−s−1

2s+ 1

)
Here, we used the expansions of log(1± t) to conclude that

∑
s≥0

5−s

2s+ 1
=

1√
5
log

√
5 + 1

2
.

2

7 Some questions for further investigation

In view of the results we have obtained, some natural questions arise.

Question 1
Do the numbers Ca(n) admit an identity generalizing Touchard’s identity (B)?

Question 2
Is there a counting proof for the identity (A) for Ca(n), such as that for (B) in [5]?

Question 3
Is there a proof by counting for the new identities (C) and (D) above?

Question 4
Are there analogues of the above lemmas for generalized Catalan numbers?
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