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Solutions 1691–1700
Q1691 This problem has been modified in order to take advantage of a fine solution
contributed by Nye Taylor1. The problem set in the last issue consisted of part (b) only.

(a) Five points are drawn on a page. Two points u and v are joined by both a red
curve and a blue curve. All other pairs are joined by one line (or curve) which is
shown in the diagram as grey, and will be coloured either red or blue.

u v

Prove that, no matter how this colouring is done, the resulting diagram will con-
tain three of the five original points mutually joined by red lines, or three points
mutually joined by blue lines.

(b) Eight points a, b, c, d, e, f, g, h are drawn on a page. Four pairs are joined by red
and blue curves, as shown in the diagram. All other pairs are joined by one line,
which will be coloured either red or blue.

a b

c

d

ef

g

h

Prove that, no matter how this colouring is done, the resulting configuration will
contain three points mutually joined by red lines, or four points mutually joined

1Nye Taylor is a student at UNSW Sydney.
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by blue lines.

SOLUTION Terminology: we will refer to the connections between points as “lines”
(even if they are curved!). We will call the sought–for configurations “a red triangle”,
“a blue triangle” and “a blue quadrilateral”, and we will say that two points joined by
a red (or blue) line are “red–neighbours” (or “blue–neighbours”). Points joined by two
lines will be called “partners”.

To prove (a), consider the point u. Excluding its partner v, each of the other three
points is either a red–neighbour or a blue–neighbour of u; since there are three points
here and only two options, it must be that either two or more of the three points are
red–neighbours of u, or two or more are blue–neighbours of u. Suppose there are two
red–neighbours, and call them x and y. Then u has three red–neighbours: its partner v,

u v

x y

and the points x and y just mentioned. If any two of v, x, y are connected by a red
line, then these two, together with u, form a red triangle; if not, then v, x, y form a blue
triangle. If u were to have two blue–neighbours rather than two red–neighbours, then
a nearly identical argument would show that the configuration contains a blue triangle
or a red triangle. This completes the proof for part (a).

Now for part (b), consider the point a. Excluding its partner b, each of the other six
points is either a red–neighbour or a blue–neighbour of a; so there must be either 3 or
more red–neighbours, or 4 or more blue–neighbours. Consider the former case: then
(restoring b) the point a has 4 red–neighbours; see the first diagram below. Either two
of these are joined by a red line, making a red triangle together with a; or all are joined
by blue lines, making a blue quadrilateral.

a

b

a

b

In the remaining case, a has (at least) 4 blue–neighbours among the points c, d and
e, f and g, h. Since we have 4 blue–neighbours chosen from 3 pairs, two of them must
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belong to the same pair and therefore must be joined by both a red line and a blue line.
Now restore b; see the second diagram above. Then the blue–neighbours of a include 5
points with at least one pair of points joined by lines of both colours. By part (a), there
are two options: either these five points include a red triangle; or they contain a blue
triangle, which together with a makes a blue quadrilateral.

We have considered every possibility, and have shown that no matter what the
colouring, our configuration must contain a red triangle or a blue quadrilateral. This
concludes the proof of (b).

Q1692 Prove that the sum of two different powers of 2 can never be a cube or higher
power of an integer. That is, there are no solutions of

2a + 2b = mp

in which a, b,m, p are non–negative integers, a 6= b and p ≥ 3.

SOLUTION By symmetry, we may assume that a < b. Then

2a + 2b = 2a(1 + 2c)

with c = b − a ≥ 1. Since the first factor is a power of 2 and the second is odd, they
have no common factor. So the only way for the product to be a pth power is for each
factor to be a pth power. Considering the second factor, this means that

1 + 2c = np

for some integer n; it is not hard to see that n is odd and n ≥ 3. Therefore,

2c = np − 1 = (n− 1)(np−1 + np−2 + · · ·+ n + 1) .

Since the product on the right-hand side equals a power of 2, each factor is a power of
2; neither factor can be 20 = 1, so they are both even. But the second factor is a sum of
p odd numbers, and for this to be even, p must be even.

So let p = 2q. Then the previous equation can be rewritten as

2c = n2q − 1 = (nq − 1)(nq + 1) .

Therefore, nq−1 and nq+1 are powers of 2, and their difference is 2: the only possibility
is that nq − 1 = 2 and nq + 1 = 4, so nq = 3; therefore, n = 3 and q = 1. But this means
p = 2, which is not so. We have ruled out all possibilities, and therefore the required
equation has no solution.

Q1693 In a semicircle on diameter AB we have AX = 3 and XY = 2. As shown in
the diagram, two isosceles triangles of equal area have AX and XY as their bases, and
their third vertices are on the semicircle. Find the diameter of the semicircle.

A BX Y
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SOLUTION Let the diameter of the semicircle be d. In the following diagram, triangles
APQ and QPB are similar,

A BP

Q

x d− x

y

and so
x

y
=

y

d− x
, that is, y2 = x(d− x) .

So in the diagram from the question, the areas of the two triangles are

1

2
× 3

√

3

2

(

d− 3

2

)

and
1

2
× 2

√

4(d− 4) .

Since these areas are equal we have

9
(3

2

)(

d− 3

2

)

= 4(4)(d− 4) ,

which simplifies to
27(2d− 3) = 64(d− 4)

and gives the diameter d =
35

2
.

Alternative solution, submitted by Hyunbin Yoo, South Korea. Let C and D be the
upper vertices of the triangles on bases AX and XY respectively, and let M and N be
the midpoints of these bases. Since triangles ACX and XDY have equal areas and
their bases are in proportion 3 : 2, their altitudes must be in proportion 2 : 3. So we
can write CM = 2h and DN = 3h. If the radius of the circle is r and the centre O, then
Pythagoras’ Theorem in the right–angled triangles CMO and DNO gives

(2h)2 +
(

r − 3

2

)2

= r2 and (3h)2 + (r − 4)2 = r2 ;

eliminating h and solving gives diameter 2r =
35

2
as above.
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Q1694 Let a,m and n be positive integers, where m is odd. Find the greatest common
factor of am − 1 and an + 1.

SOLUTION Let g be the required greatest common factor: then we have

am − 1 = sg and an + 1 = tg

for some integers s, t. Rewriting the first equation and using the binomial theorem, we
have

amn = (1 + sg)n

= 1 +

(

n

1

)

sg +

(

n

2

)

s2g2 + · · ·+ sngn

= 1 + g

[(

n

1

)

s+

(

n

2

)

s2g + · · ·+ sngn−1

]

.

Since the expression in square brackets is an integer, g is a factor of amn−1. By a similar
process, and remembering that m is odd, we have

amn = (−1 + tg)m = −1 + g

[(

m

1

)

t−
(

m

2

)

t2g + · · ·+ tmgm−1

]

,

and so g is a factor of amn + 1. Therefore g is a factor of the difference

(

amn + 1
)

−
(

amn − 1
)

= 2 ,

and so g = 1 or g = 2. Now if a is odd, then am − 1 and an + 1 are even, so g = 2 is a
factor of each; if a is even, then these numbers are odd, so g = 2 is a factor of neither.
Therefore, for any odd m, the greatest common factor of am − 1 and an + 1 is 1 if a is
even, 2 if a is odd.

Q1695 Three groups of 2, 3 and 4 passengers arrive independently and at random
times at a railway station where a train departs every 12 minutes. What is the proba-
bility that the average waiting time per person is more than 8 minutes?

SOLUTION Suppose that the three groups arrive at x minutes, y minutes and z min-
utes before the next train is due. The average waiting time will then be

2x+ 3y + 4z

9
,

and we want to find the probability that 2x + 3y + 4z > 72. The space of all possi-
ble arrival times for the three groups can be visualised as the cube specified by the
inequalities

0 ≤ x ≤ 12 , 0 ≤ y ≤ 12 , 0 ≤ z ≤ 12 ,

and the probability we want is the proportion of this cube which satisfies the inequality
2x+3y+4z > 72. Geometrically, this is the region within the cube and above the plane
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2x+3y+4z = 72. The plane intersects the edges of the cube at the four points W,X, Y, Z

in the diagram.

W = (0, 8, 12)

X = (0, 12, 9)

Y = (12, 12, 3)

Z = (12, 0, 12)
(0, 0, 0)

A

B

W X

YZ

For example, to find the point Y , we note that it lies on the edge AB, where we have
x = 12, y = 12: substituting into the equation of the plane gives z = 3. Calculations
for W , X and Z are left to the reader. The region that we are seeking is a truncated
pyramid; the base is a right–angled triangle and the vertex is perpendicularly above
the right angle. Constructing a similar pyramid on top of the truncated pyramid,

B

Y

Z

W
X

12
9

12

43

6

we find the volume to be

12× 9× 18

6
− 4× 3× 6

6
= 26× 12 .

The required probability is the ratio of this volume to the whole cubical volume,

p =
26× 12

123
=

13

72
.
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Q1696 Let n be an integer, n ≥ 2, and let p(x) be a polynomial with degree at most
n, having integer coefficients. Suppose that the values of p(x), where x is an integer,
include all the numbers 0, 1, 2, . . . , n. Prove that p(x) = x+ c for some constant c.

SOLUTION Begin with the well-known factorisation

xm − ym = (x− y)(xm−1 + xm−2y + · · ·+ xym−2 + ym−1) .

This shows that if x and y are integers then x − y is a factor of xm − ym; multiplying
by integer coefficients and adding up a number of terms like this shows that x − y is
always a factor of p(x)− p(y).

Now the values of p(x) include all the numbers 0, 1, 2, . . . , n, say

p(a0) = 0 , p(a1) = 1 , p(a2) = 2 , . . . , p(an) = n .

All the values ak must be different since all the values p(ak) are different. Now from
the previous paragraph, a1 − a0 is a factor of p(a1)− p(a0); that is, a1 − a0 is a factor of
1; and since a1, a0 are integers, a1 − a0 = ±1. Treating other pairs in the same way, we
have

a1 − a0 = ±1 , a2 − a1 = ±1 , . . . , an − an−1 = ±1 .

Moreover, all the signs in these equations must be the same, or else we should have at
some point ak+1 − ak = −(ak+2 − ak+1), so ak = ak+2, which is not true. We shall treat
the case in which all the signs in the equations are + ; the case in which they are all −
is very similar.

So then we have ak = a0 + k for all k, and hence

p(ak)− ak + a0 = 0

for all k. This means that the polynomial p(x) − x + a0 has a minimum of n + 1 roots.
But this polynomial has degree n or less, and so the only possibility is that it is zero for
all values of x. Therefore, p(x) = x− a0, and this is x plus a constant, as required.

Q1697

(a) Each cell in a 3 × 4 rectangle has a value of 0 or 1. Prove that it is impossible for
every row and column to have an odd sum. How many such rectangles can be
constructed such that each row and column has an even sum?

(b) Each cell in 3×4×5 box is assigned an integer value from 0 to 9. How many such
boxes can be formed so that every line in all three directions has a sum divisible
by 10?

SOLUTION Let S be the sum of all cells, and suppose that all row and column sums
are odd. Then S is both the sum of three odd numbers and the sum of four odd num-
bers; so S is simultaneously odd and even. This is clearly impossible, and we have
answered the first question.
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Now we count the rectangles in which the sum of each row and column is even.

row 1

row 2

row 3

columns
1 2 3 4

There are clearly 26 = 64 ways to enter either 0 or 1 in each of the yellow cells. We can
then fill in uniquely the bottom entries in columns 1, 2 and 3 to make sure that each
of these columns has an even sum; and then the entries in column 4 to make sure that
every row has an even sum. We need to check that column 4 also has an even sum. But
we can obtain the sum of column 4 by adding all the entries in the grid, which have
an even total; and then subtracting the entries in columns 1, 2, 3, which also have an
even total; so the sum of column 4 is indeed even. Thus, every choice of six numbers
for the yellow cells gives exactly one completed grid, and so the number of ways to fill
the grid is 64.

For part (b), we consider five “layers”, each of which is a 3 by 4 rectangle as in
part (a).

For each of the 2×3×4 yellow cells in the bottom four layers, enter a number from 0 to
9. There are 1024 ways of doing this, and by an argument similar to that in (a), each of
these gives one way to fill the remaining cells in these layers so that every horizontal
line in these layers adds up to a multiple of 10. The numbers in the yellow cells also
give exactly one possibility for the blue cells above them in the top layer, and these
then give one way to fill the green and red cells in the top layer so that all horizontal
rows in the top layer add up to a multiple of 10.
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It remains to check that for every vertical line of green or red cells, the sum is also a
multiple of 10. Essentially, this is the same argument as we have used previously. For
example, consider the back face of the box (hidden in the diagram). This consists of 5
horizontal lines of four cells: we know that each line sums to a multiple of 10, so the
whole face sums to a multiple of 10. But the face also consists of 4 vertical lines of five
cells: we know that 3 of them (the ones with a blue cell on top) sum to a multiple of 10,
and therefore so does the last. The number of ways to fill the grid is 1024.

Q1698 In the diagram, WXY Z is a parallelogram, and the numbers indicate the areas
of certain subregions. Find the area of the coloured region.

Y

W X

Z

P

Q

R

A
B

C

D

E F

G

120

96 701

143

SOLUTION submitted by Hyunbin Yoo, South Korea. Label the unspecified regions
with letters as shown. Let h be the altitude of the parallelogram, that is, the perpendic-
ular distance between WX and Y Z. Then

area(PWY ) + area(PXZ) =
(PW )h

2
+

(PX)h

2
=

(Y Z)h

2
= area(Y ZP )

and so area(PWY ) + area(PXZ) is half the area of the parallelogram. For similar rea-
sons, area(QWX) + area(QY R) is also half the area of the parallelogram. Substituting
the areas marked on the diagram,

A + 120 +B +D + E + F = A + 96 +D +B + 701 + F + 143 ,

which simplifies to E = 820.
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Q1699 Suppose that
(
√
20 +

√
23
)2023

= a
√
20 + b

√
23

where a and b are integers. Find the remainders when a and b are divided by 33.

SOLUTION Note that

ak+1

√
20 + bk+1

√
23 =

(
√
20 +

√
23
)2k+3

=
(
√
20 +

√
23
)2k+1(

√
20 +

√
23
)2

=
(

ak
√
20 + bk

√
23
)(

43 + 2
√
20
√
23
)

= (43ak + 46bk)
√
20 + (40ak + 43bk)

√
23 ,

and so
ak+1 = 43ak + 46bk , bk+1 = 40ak + 43bk .

Using these recurrences to calculate successive values of (ak, bk), and replacing the
values by their remainders when divided by 33, we find

(a0, b0) = (1, 1)

(a1, b1) = (89, 83) ≡ (23, 17)

(a2, b2) ≡ (1771, 1651) ≡ (22, 1)

...

(a10, b10) ≡ (1, 1) .

Thus the remainders of a and b when divided by 33 repeat every 10 steps. To find the
values of a and b in the question, we take 2k + 1 = 2023, that is, k = 1011, and we have

(a, b) = (a1011, b1011) ≡ (a1, b1) = (23, 17) .

That is, a has remainder 23 when divided by 33, and b has remainder 17.

Q1700 Find the sum of all natural numbers from 1 to 100 which have no common
factor with 2022. Also, write the product of these numbers as an expression in terms of
powers and factorials.

SOLUTION We can factorise 2022 = 2 × 3 × 337, so the numbers we are considering
will be the odd numbers from 1 to 100 not divisible by 3. So the sum is given by

S = (1 + 3 + 5 + · · ·+ 99)− (3 + 9 + 15 + · · ·+ 99)

=
50× 100

2
− 17× 102

2
= 1633
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and the product by

P =
1× 3× 5× · · · × 99

3× 9× 15× · · · × 99

=
1

317
1× 3× 5× · · · × 99

1× 3× 5× · · · × 33

=
1

317
1× 2× 3× · · · × 100

1× 2× 3× · · · × 34

2× 4× 6× · · · × 34

2× 4× 6× · · · × 100

=
1

317
1× 2× 3× · · · × 100

1× 2× 3× · · · × 34

217

250
1× 2× 3× · · · × 17

1× 2× 3× · · · × 50

=
1

233317
100! 17!

34! 50!
.

Solutions were received from Hyunbin Yoo, South Korea, and from Shivam Mokashi,
Abhinava Vidyalaya, India.
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