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Goats, partitions, triangles and necklaces
John Winkelman1 and Mark Yeo2

1 Introduction

The goat problem [1] is as follows. There is a herd of n goats which have the odd habit
of dividing into new groups every so often. These groups are formed according to

Rule R:

One goat from each group leaves, to together form a new group,
while all other goats remain in their respective groups.

This process occurs repeatedly throughout the day until at some point the number of
groups remains constant. If there are 7 groups at this point, then what must n be?

Solution: The number of groups will only remain constant at 7 when the group sizes
are M = (1, 2, 3, 4, 5, 6, 7), because R applied to M produces M , i.e., R(M) = M . Since
the elements of M sum to 28, the answer to the goat problem is n = 28.

Remark 1. It may take a long time to reach this steady-state. For example, from an
initial grouping of four equal groups of size 7, it requires 38 applications of the rule R
to produce the partition M .

This problem suggests a generalisation: given an arbitrary initial grouping of n
goats, which values of n will produce a constant number of groups with repeated ap-
plications of R? A solution to this problem will be formed later in this paper.

2 Partitions and the operator H

The goat problem will be put aside for now but two aspects of it shall be retained,
namely the rule R and partitions. Instead of R, the operator H is introduced - which
does the same thing but applies to partitions of integers instead of to groups of goats.

Definition 2 (Partition). A partition P of an integer n is a multiset of positive integers
whose sum is n. |P | is the number of elements in P . [3]
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Figure 1: The goat division rule R applied to an initial division of goats. [2]

In this paper, the elements of a partition will be written in ascending order, enclosed
in parentheses. For example (1, 1, 4, 5) is one of many partitions of 11, and |P | = 4.
Figure 2 represents this partition visually as rows of boxes - these are called Young
diagrams or Ferrers diagrams. The number of boxes in each row represents the size of
each element within the partition.
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Figure 2: Partition P = (1, 1, 4, 5).

The larger n is, the more partitions there are. The longest of these is (1, 1, . . . , 1)
with n elements, and the shortest is (n) with only one element.

Definition 3 (The operator H). The operation H on a partition P reduces each element
of P by one, and adds the new element |P |. All zero elements are discarded. The result
of applying H to P is H(P ). This is a well-defined operation on the set of all partitions.

Definition 4 (Powers of H). The k-th power of H is the operation of applying k times
the operation H . Therefore, H0(P ) = P and Hk(P ) = H(Hk−1(P )) for all k ≥ 1.
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Example 5. If P = (1, 1, 1, 3, 6), then

H(P ) = (2, 5, 5)

H2(P ) = H(H(P )) = (1, 3, 4, 4)

H3(P ) = H(H2(P )) = (2, 3, 3, 4)

. . . and so on. These examples are shown in detail in Figure 3, in which each new element of
Hk(P ) is indicated in grey. Note that |H(P )| can be smaller, the same or larger than |P |.
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Figure 3: H(P ), H2(P ) and H3(P ) for P = (1, 1, 1, 3, 6).

Theorem 6. If P is a partition of n, then Hk(P ) is a partition of n.

Proof. H reduces each of the |P | elements of P by 1 and adds the element |P | to H(P ).
The sum of elements in P and H(P ) are the same, so P and H(P ) are partitions of the
same number. Therefore, this is true of any number of applications of H to P . 2

Theorem 7. If P contains exactly k 1’s, then |H(P )| = |P | − k + 1.

Proof. If P contains k 1’s, then they are all eliminated in H(P ), the other |P | − k
elements in H(P ) remain greater than 0, and the new element |P | is added to H(P ).
Thus, |H(P )| = |P | − k + 1. 2

Corollary 8.
If P contains no 1’s, then |H(P )| = |P |+ 1.
If P contains one 1, then |H(P )| = |P |.
If P contains more than one 1, then |H(P )| < |P |.

Example 9. The following partitions illustrate the statements of Corollary 8.

P = (2, 3) H(P ) = (1, 2, 2)

P = (1, 2, 2) H(P ) = (1, 1, 3)

P = (1, 1, 3) H(P ) = (2, 3)
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3 Cycles and standard partitions

Definition 10 (The operator H∗). H∗(P ) is the shortest sequence of partitions

P,H(P ), . . . , Hk(P )

that contains H i+1(P ) for each i ≥ 0.

Example 11. H∗(1, 3, 5) = (1, 3, 5), (2, 3, 4), (1, 2, 3, 3), (1, 2, 2, 4), (1, 1, 3, 4) since the next
partition in the sequence is (2, 3, 4) which is already in the sequence - see Figure 4.

1,2,3,3 1,2,2,42,3,4 1,1,3,41,3,5

Figure 4: The sequence H∗(1, 3, 5).

Definition 12 (Cycles). A cycle is a sequence H∗(P ) whose final element Q satisfies
H(Q) = P . Put more simply, H∗(P ) is a cycle if it recurs.

Example 13. In Figure 4, H∗(1, 3, 5) is not a cycle but contains the cycle H∗(2, 3, 4).

Definition 14 (Equivalent cycles).
Two cycles are equivalent if they contain the same partitions.

Example 15. H∗(2, 3, 4), H∗(1, 2, 3, 3) and H∗(1, 1, 3, 4) are equivalent - see Figure 4.

Theorem 16. The set of partitions of n contains one or more cycle.

Proof. Since there are finitely many partitions of n, H∗(P ) must be of finite length for
any partition P of n. Therefore the final element Q of H∗(P ) starts a cycle, since H(Q)
is a element of H∗(P ). 2

1

n = 1

2 1,1 

n = 2

1,2 

n = 3

1,3 2,2 1,1,2 

n = 4

1,2,4 1,3,3 2,2,3 1,1,2,3 

n = 7

1,2,3 

n = 6

2,3 1,2,2 1,1,3 

n = 5

2,2,4 1,1,3,3 1,3,4 2,3,3 1,2,2,3 1,1,2,4 

n = 8

Figure 5: Cycles for n = 1 to 8.

The cycles for n = 1 to 8 are listed in Figure 5. Note that n = 8 is the first n for
which there are has two cycles.
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Definition 17 (Triangle numbers). The triangle number Tm is the sum 1 + 2 + · · · +m -
see Figure 6. It is not hard to show that Tm = m(m+ 1)/2.

T1 T2 T3 T4 T5

Figure 6: Triangle numbers.

Note that in Figure 5, if n is a triangle number - i.e., 1, 3, 6 - then its corresponding
cycle has length one [4].

Definition 18 (Standard partitions). A standard partition of n, where n = Tm+r < Tm+1,
is one that can be constructed from the sequence 0, 1, . . . ,m by adding 1 to r of the
elements.

Example 19. n = 12 satisfies n = T4 + 2 = 10 + 2. Some standard partitions of 12 can be
constructed as follows:

(0, 1, 2, 3, 4) + (1, 1, 0, 0, 0) = (1, 2, 2, 3, 4)

(0, 1, 2, 3, 4) + (1, 0, 1, 0, 0) = (1, 1, 3, 3, 4)

(0, 1, 2, 3, 4) + (0, 1, 0, 1, 0) = (0, 2, 2, 4, 4)

(0, 1, 2, 3, 4) + (0, 0, 0, 1, 1) = (0, 1, 2, 4, 5)

These can be formed using the T4 base - see Figure 7 in which T4 is indicated with white boxes.
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Figure 7: Standard partitions (1, 2, 2, 3, 4), (1, 1, 3, 3, 4), (0, 2, 2, 4, 4) and (0, 1, 2, 4, 5).

Definition 18 entails using 0 in some standard partitions. Therefore, standard par-
titions P may be represented based on n = Tm + r < Tm+1 as (p0, p1, . . . , pm), where p0
may be 0 or 1.

Definition 20 (The partition P − M ). If P is standard for n = Tm + r < Tm+1 and
M = (0, 1, . . . ,m), then P − M consists of the elements xj = pj − j for j = 0, . . . ,m.
Note that r of the xj are 1 and m + 1 − r are 0 since pj = j + 1 for r j’s, and pj = 0 for
m+ 1− r j’s.
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Figure 8: P−M = (0, 0, 1, 1, 1) for P = (0, 1, 3, 4, 5), indicated by black and white beads.

Example 21. P = (0, 1, 3, 4, 5) is standard for n = 13 = T4 + 3. Since M = (0, 1, 2, 3, 4),
P −M = (0, 0, 1, 1, 1) - see Figure 8.

Theorem 22. Let n = Tm + r < Tm+1 and P − M = (p0 − 0, p1 − 1, . . . , pm − m) be
(x0, x1, . . . , xm). Then H(P )−M = (x1, x2, . . . , xm, x0) and, more generally for all k ≤ m,

Hk(P )−M = (xk, xk+1, . . . , xm, x0, x1, . . . , xk−1) .

Proof. We have P = p0, p1, . . . , pm. Hence,

P −M = (p0, p1 − 1, p2 − 1, . . . , pm)−m = (x0, x1, . . . , xm).

Moreover,

H(P ) = (h0, h1, . . . , hm) = (p1 − 1, p2 − 1, . . . , pm−1 − 1,m+ p0).

We deduce that

H(P )−M = (h0, h1 − 1, h2 − 2, . . . , hm −m)

= (p1 − 1, p2 − 2, p3 − 3, . . . , p0)

= (x1, x2, x3, . . . , xm, x0)

The result for Hk(P ) follows from repetitions of the result for H(P ). 2

A partition P may be determined to be standard as follows: find n by adding the
elements of P . Then n = Tm + r = m(m + 1)/2 + r gives m and r. If |P | is not m or
m+1, then P is not standard. Then compare P with M = (0, 1, . . . ,m), adding a 0 to P
if necessary to make P and M of the same length. Then subtract M from P . This gives
P −M in which there are r 1’s, and the rest 0’s.

Example 23. For P = (1, 3, 3, 5, 6), n = 18 = T5 + 3, so m = 5, r = 3 and |P | = 5 = m.
Add a 0 to equate the lengths of P and M = (0, 1, 2, 3, 4, 5); that is, P = (0, 1, 3, 3, 5, 6).
Then P −M = (0, 0, 1, 0, 1, 1), so P is standard.

Theorem 24. Suppose that n = Tm + r < Tm+1. If r = 0, then there is only one standard
partition P of n and |P | = m. If r > 0, then the standard partitions P of n have |P | = m or
m+ 1 elements, ignoring 0.

Proof. This follows directly from Definition 18. 2
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1,2,3 

n = 6

2,3 1,2,2 1,1,3 

n = 551,1,1,1,1

1,41,1,1,2

51,1,1,1,1,1

1,1,41,1,2,2 3,3 2,2,2 1,1,1,3

2,41,51,1,1,1,2

Figure 9: The partitions for n = 5 and n = 6 and their connections via H .

Example 25. Figure 9 shows all possible partitions of n = 5 and n = 6 and how they are
connected via the operator H . For n = 5 = T2 +2, there are three standard partitions of length
|P | = 2 or 3. For n = 6 = T3, the only standard partition of n is (1, 2, 3), which can also be
written as (0, 1, 2, 3).

Definition 26 (C(n, r)).
C(n, r) = n!/(r!(n− r)! is the number of r-sized subsets of a set of n objects.

Example 27. There are C(8, 3) = 8!/(3!× 5!) = 56 possible sets of size 3 drawn from a set of
8 distinct objects.

Theorem 28. If n = Tm + r < Tm+1, then there are C(m+ 1, r) standard partitions of n.

Proof. Let P = p0, p1, . . . , pm be a standard partition for n. There are r values of j that
satisfy pj = j+1. There are m+1 positions, including p0, and thus C(m+1, r) standard
partitions of n. 2

Example 29. If n = T2 + 2 = 5, then n has C(3, 2) = 3 standard partitions - see Figure 9.
If n = T5 + 4 = 19, then n has C(6, 4) = 15 standard partitions, of which one is

(0, 1, 2, 3, 4, 5) + (0, 1, 0, 1, 1, 1) = (0, 2, 2, 4, 5, 6) .

There are 14 others.

Table 1 compares the number of standard partitions with the total number of partitions.
Note that C(m + 1, r) is not monotonic as a function of n, since it depends on both m
and r and is a small fraction of the total number of partitions as n increases.

Theorem 30. If P is standard for n = Tm + r < Tm+1, then |H(P )| = m or m+ 1.

Proof. Since P is standard, |P | = m or m+ 1.
If P has no 1, then |P | = m and |H(P )| = |P |+ 1 = m+ 1.
If P has one 1, then |P | = |H(P )| = m or m+ 1.
If P has two 1’s, then |P | = m+ 1 and |H(P )| = |P | − 1 = m.
A standard partition P must have 0, 1 or 2 1’s, so H(P ) = m or m+ 1. 2
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Standard All
n m r Partitions Partitions [3]
5 2 2 3 7

10 4 0 1 42
20 5 5 6 627
30 7 2 28 5604
40 8 4 126 37338

Table 1: Number of standard and all partitions for different values of n.

Theorem 31. Let hj be the elements of H(P ) for any standard partition P = p0, p1, . . . , pm.
Then hj = pj+1 − 1 for each j = 0, 1, . . . ,m− 1 and hm = m+ p0.

Proof. H(P ) is the non-descending sequence of m+ 1 numbers p1 − 1, . . . , pm − 1, |P |,
which are labelled h0 to hm. Thus, hj = pj+1 − 1 for each j = 0, 1, . . . ,m − 1, and
hm = |P | = p0 +m. 2

Theorem 32. If P is a standard partition, then H∗(P ) are all standard partitions.

Proof. It is sufficient to show that if P is standard, then H(P ) is standard.
Suppose that n = Tm + r < Tm+1 If r = 0, then n = Tm and the only standard

partition of n is P = (0, 1, . . . ,m). Since H(P ) = P in this case, H(P ) is standard if P
is standard. If r > 0, then the elements of a standard partition P = p0, p1, . . . pm satisfy
pj = j or j + 1 for j = 0, 1, . . . ,m by Theorem 31.

If P is standard, then |H(P )| = m or m + 1, by Theorem 30. By Theorem 31, the
elements of H(P ) are hj = pj+1 − 1 for j = 0, 1, . . . ,m− 1, and hm = m+ p0. Since pj+1

is j + 1 or j + 2 for j = 0, 1, . . . ,m− 1, hj is j or j + 1 for j = 0, 1, . . . ,m− 1, and hm is
m or m+ 1. Therefore, H(P ) is standard. 2

4 Inverses of P

Definition 33 (Inverse of a partition).
An inverse of a partition P is any partition Q satisfying H(Q) = P .

For a given integer n, there are many partitions. Each partition P has a unique
sequence H(P ) but not every partition P has an inverse. For example P = (1, 1, 2, 2)
has no inverse. Some partitions have multiple inverses: for instance (1, 2, 3) has itself
and (2, 4) as inverses - see Figure 9. A formula may be found for the number of inverses
of a partition P , based on how many 1’s and elements larger than 1 it has.

Theorem 34. Let P = (1k, x1, x2, . . . , xr) be any partition of n, where 1k means k 1’s and
1 < xj ≤ xj+1 for all j. Then P has an inverse Q if and only if xj ≥ |P | − 1 for some xj in P .

Proof. Suppose that P = (1k, x1, x2, . . . , xr) where 1 < x1 ≤ x2 ≤ · · · ≤ xr and that P
has at least one inverse Q. Then 1k in P comes from 2k in Q and xi in P comes from
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xi+1 in Q except if xj is |Q| for some xj . Suppose that Q has t 1’s. Then Q has the form
(1t, 2k, x1 + 1, x2 + 1, . . . , xr + 1) less some xj + 1.

Both P and Q represent the same n. Therefore, n = k +
∑

xi , some xj = |Q|, and
n = t + 2k +

∑
(xi + 1) − (xj + 1) = t + 2k +

∑
xi + r − (xj + 1). It follows that

k +
∑

xi = t+ 2k +
∑

xi + r − (xj + 1). Thus, xj + 1 = k + t+ r, so t = xj + 1− k − r
for some j. Since k + r = |P |, this simplifies to t = xj + 1− |P |. Therefore, t ≥ 0 if and
only if xj ≥ |P | − 1. 2

Example 35. Let P = (1, 2, 4). Then xj ≥ |P | − 1 = 2 has two solutions, x2 = 2 and
x3 = 4, so P has two inverses, namely (1, 1, 2, 3) and (2, 5). Now let P = (1, 1, 1, 4). Then
xj ≥ |P | − 1 = 3 has only one solution, namely x4 = 4, so P has a unique inverse, namely
Q = (1, 2, 2, 2). Finally, let P = (1, 1, 1, 2, 3). Then xj ≥ |P | − 1 = 4 has no solution for xj

and so P has no inverse - see Figure 10.

1,2,4 1,1,2,3 

2,5

1,1,1,41,2,2,2 1,1,1,2,3

Figure 10: Inverses of (1, 2, 4), (1, 1, 1, 4) and (1, 1, 1, 2, 3).

Theorem 36. A standard partition has exactly one standard inverse.

Proof. Theorem 31 states that hj = pj+1 − 1 for j = 0, 1, . . . ,m − 1 and hm = p0 + m.
A standard partition P determines H(P ), which is also standard, and P is also an
inverse of H(P ). The equations above are reversed: pj+1 = hj +1 for j = 0, 1, . . . ,m− 1
and p0 = hm−m. Given H(P ), these determine P , so P is unique as a standard inverse
of H(P ). Note that H(P ) may also have a non-standard inverse. 2

Let us now look at the problem of finding an inverse. Given P = 1k, x1, x2, . . . , xr,
determine which xj are |P | − 1 or greater. Then t = xj + 1 − |P | is the number of 1’s
in Q and k is the number of 2’s in Q, where Q is an inverse of P . An inverse of P is
therefore the partition Q with all xi + 1 except for xj + 1. s

Example 37. Let us construct the inverse of H(P ) = (0, 1, 3, 4, 5). Here, n = 13 = T4 +3, so
m = 4. Then pj+1 = hj + 1 for j = 0, 1, . . . ,m− 1 and p0 = hm −m. Thus,

p0 = h4 − 4 = 5− 4 = 1

p1 = h0 + 1 = 0 + 1 = 1

p2 = h1 + 1 = 1 + 1 = 2

p3 = h2 + 1 = 3 + 1 = 4

p4 = h3 + 1 = 4 + 1 = 5

Hence, P = (1, 1, 2, 4, 5), the standard inverse of (0, 1, 3, 4, 5) - shown in Figure 11.

Example 38. Let P = (1, 2, 4); then |P | − 1 = 2.
If xj = 2, then t = xj + 1− |P | = 3− 3 = 0 and k = 1, so Q1 = (2, 5).
If xj = 3, then t = 3 + 1− 3 = 2 and k = 1, so Q2 = (1, 1, 2, 3).
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1,1,2,4,5 

2,5,6

1,2,4,6

1,3,4,5 

Figure 11: All inverses of (1, 3, 4, 5).

Theorem 39. The number of inverses of P = (1k, x1, x2, . . . , xr) is the number of distinct
elements xj > |P | − 1. If xr < |P | − 1, where xr is the largest element in P , then P has no
inverse. Otherwise, P has one or more inverses.

Proof. By Theorem 34, the number of inverses of P is the number of distinct elements
xj satisfying xj ≥ |P | − 1. Each of these gives a different value of t = xj + 1 − |P |, the
number of 1’s in Q. 2

Example 40. If P = (1, 1, 1, 2, 6), then p4 = 6 > |P | − 1 = 4, so P has an inverse Q - but
only one, since p3 = 2 < |P | − 1. Now, t = 6 + 1− 5 = 2, so Q = (1, 1, 2, 2, 2, 3).

Theorem 39 can be used to settle a possible issue: could a standard cycle lack an entry
point from a non-standard partition, i.e., be isolated from the other standard partitions?

Theorem 41. For n > 1, every standard cycle has an entry point from a non-standard parti-
tion. Equivalently, for n > 1 every cycle has a element which has more than one inverse.

Proof. If n = Tm+ r < Tm+1, then a standard partition P for n will have two inverses if
and only if two values of pj are greater than or equal to |P | − 1, by Theorem 39. Now,
|P | is m or m+1. Two of the values pj which could be greater than or equal to m− 1 or
m are pm−1 and pm. Since pm is m or m+1, pm > |P |−1. If |P | = m, then pm−1 ≥ |P |−1.
By Theorem 39, if H∗(P ) is of length m+1, then m+1− r elements of H∗(P ) will have
|Hk(P )| = m, so at least m+1− r elements of H∗(P ) will have two inverses. Therefore,
at least one of H∗(P ) will have two inverses, one of which is non-standard and serves
as an entry point for the cycle H∗(P ).

Note that a partition may have more than two inverses, depending on the number
of values of pj that satisfy pj ≥ |P | − 1. For example, (2, 3, 4, 5) has three inverses -
shown in Figure 12.

If H∗(P ) has partitions of unequal length, then it will still have at least one Hk(P )
of length m. If |H∗(P )| is (m + 1)/k, then k will divide both m + 1 − r and r. Now,
H∗(P ) has (m + 1 − r)/k ≥ 1 elements of length m and so H∗(P ) will have an entry
point in this case as well. 2

Example 42. If P −M = (1, 1, 1, 0, 1), then

H∗(P )−M = (1, 1, 1, 0, 1) , ∗(1, 1, 0, 1, 1) , ∗(1, 0, 1, 1, 1) , ∗(0, 1, 1, 1, 1) , (1, 1, 1, 1, 0)

The three starred items - corresponding to the partitions

(1, 2, 2, 4, 5) , (1, 1, 3, 4, 5) , (0, 2, 3, 4, 5)

have two inverses each, shown in Figure 12.
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1,2,2,4,5 1,1,3,4,51,2,3,3,5 0,2,3,4,5 1,2,3,4,4

2,3,3,6 2,2,4,6 3,5,6

1,3,4,6

Figure 12: Cycle with multiple non-standard entry points.

Theorem 43. The number of partitions for n having no inverse is greater than or equal to the
number of cycles for n.

Proof. Every H∗(P ) ends in a cycle. Thus, to each P there is a unique cycle. However,
two or more partitions may have the same cycle. Every cycle lies in some H∗(P ) where
P has no inverse. Thus, the number of cycles cannot exceed the number of partitions
without inverse but may be smaller. 2

Example 44. n = 5 has the partitions

(5) , (4, 1) , (3, 2) , (3, 1, 1) , (2, 2, 1) , (2, 1, 1, 1) , (1, 1, 1, 1, 1) .

Of these, (2, 1, 1, 1) and (1, 1, 1, 1, 1) have no inverses. The only cycle is H∗(1, 2, 2).

Theorem 45. If P is a standard partition, then H∗(P ) is a cycle.

Proof. Now, H∗(P ) = P , H(P ), . . . ,Hk(P ) for some k, all of which are standard parti-
tions. It needs to be established that Hk+1(P ) = P . By the definition of H∗(P ), Hk+1(P )
is one of P,H(P ), . . . , Hk(P ). Suppose that Hk+1(P ) = Hm(P ) = Q where m > 0, so
that H∗(Q) is a cycle but H∗(P ) is not. Then Q has two standard inverses, one being
Hm−1(P ), since Hm(P ) = Q, but also Hk(P ), since Hk+1(P ) = Q. However, Theorem 36
shows that a standard partition can have only one standard inverse. Hence, m = 0 and
Hk+1(P ) = P , and H∗(P ) is a cycle. 2

Remark 46. The application of H reduces P to a circular rotation of the elements of P −M .
After m + 1 rotations, Hm+1(P ) = P , which is the usual cycle length. However, certain
periodic configurations of P − M will rotate to themselves in fewer rotations. An example
occurs with the cycle H∗(0, 2, 2, 4) = (0, 2, 2, 4), (1, 1, 3, 3). Subtracting M = (0, 1, 2, 3) gives
(0, 1, 0, 1) and (1, 0, 1, 0) which are periodic sequences and thus have a shorter cycle length -
see Figure 13.

Theorem 47. If P is a standard partition for n and Tm < n < Tm+1, then the cycle H∗(P ) is
of length m+ 1 or a divisor of m+ 1. If |H∗(P )| = m+ 1, then H∗(P ) contains r elements of
length m+ 1, and m+ 1− r elements of length m.
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1,1,3,30,2,2,4 

Figure 13: Cycle H∗(0, 2, 2, 4) is shorter as the necklace P −M is periodic.

Proof. By Theorem 22, H rotates the 1’s and 0’s in P − M to the left. If they are not
periodic, then the rotation has m+1 steps. If the 1’s are periodic, then the period length
must divide m+ 1. The 0th position will be visited once by each of the r 1’s. Each time
that happens, the partition length will be m + 1. Therefore, there are r partitions of
length m+ 1. 2

Example 48. Let P = (2, 3, 4) be a standard partition of 9. Then n = 9, m = 3 and r = 3,
and H∗(2, 3, 4) has r = 3 partitions of length m+ 1 = 4 and m+ 1− r = 1 of length m = 3.
Also, H∗(2, 3, 4) = (2, 3, 4), (1, 2, 3, 3), (1, 2, 2, 4), (1, 1, 3, 4) - see Figure 4.

5 The number of cycles

Definition 49. A necklace is a circular sequence of elements. It can be rotated but not
flipped over.

Theorem 50. If n = Tm + r, then n has as many cycles as there are necklaces with m+ 1− r
white beads and r black beads.

Proof. P − M consists of m + 1 − r 0’s and r 1’s in a certain arrangement depending
on P . A cycle for P corresponds to a cycle for P −M . If the arrangement of 0’s and 1’s
is not periodic, then P −M and P will have a cycle of length m+1. If the arrangement
of 0’s and 1’s is periodic, then P − M will have a cycle of length (m + 1)/k, where k
is the number of periods. This is possible only when r and m + 1 − r have common
divisors. The arrangement of 0’s and 1’s correspond to a sequence of white and black
beads, forming a necklace. The values of Hk(P ) will correspond to rotations of the
necklace. A periodic necklace will have fewer distinct rotations. 2

Example 51. If P = (0, 2, 3, 4), then the corresponding necklace is given by P − M =
(0, 1, 1, 1). This necklace is then rotated throughout the sequence H∗(2, 3, 4) - see Figure 14.

1,2,3,3 1,2,2,40,2,3,4 1,1,3,4

Figure 14: The sequence H∗(2, 3, 4) with corresponding necklaces above each partition.

The following section indicates how to calculate the number of necklaces with
x white and y black beads, based on an unpublished paper by the first author.
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5.1 The number of black-and-white necklaces

Definition 52 (S(x, y)).
S(x, y) = C(x+ y, x) = (x+ y)!/(x!y!) is the number of sequences with x 0’s and y 1’s.

Example 53. S(3, 5) = 8!/(3!5!) = 56.

Definition 54 (G(x, y)).
G(x, y) is the number of non-periodic sequences with x 0’s and y 1’s. This number is
defined recursively as follows: G(x, y) = S(x, y)−

∑
r G(x/r, y/r) where each r divides

both x and y and is greater than 1. Note that if no such r exists, then G(x, y) = S(x, y).

Example 55.

G(2, 3) = S(2, 3) = 10

G(4, 6) = S(4, 6)−G(2, 3) = 210− 10 = 200

G(6, 9) = S(6, 9)−G(2, 3) = 5005− 10 = 4995

G(12, 18) = S(12, 18)−
(
G(12/2, 18/2) +G(12/3, 18/3) +G(12/6, 18/6)

)
= S(12, 18)−

(
G(6, 9) +G(4, 6) +G(2, 3)

)
= 86 493 225− (4995 + 200 + 10)

= 86 488 020 .

Theorem 56. The number of necklaces having x white and y black beads is

N(x, y) =
∑
r

r G(x/r, y/r)

x+ y
.

where r ≥ 1 divides x and y. The number of necklaces having r periods is rG(x, y)/(x + y),
where r divides both x and y. The case r = 1 corresponds to non-periodic necklaces.

This enumerates the non-periodic and periodic necklaces.

Example 57. The number of necklaces with 12 white beads and 18 black beads is

N(12, 18) = G(12, 18)/30 +G(6, 9)/15 +G(4, 6)/10 +G(2, 3)/5

= 2 882 934 + 333 + 20 + 2

= 2 883 289 .

Of these, 2 882 934 are not periodic.
333 have the form XX where X has 12/2 = 6 black beads and 18/2 = 9 white beads.
20 have the form XXX where X has 12/3 = 4 black beads and 18/3 = 6 white beads.
2 have the form XXXXXX where X has 12/6 = 2 black beads and 18/6 = 3 white beads.
In each of the cases above, X is non-periodic.

To go from necklaces to partition cycles, note that n = Tm+r. If r = 12 and m+1−r = 18,
then m = 29 and n = T29 + 12 = 447. It follows that n = 447 has 2 883 289 cycles, of which
2 882 934 are of length 30; 333 are of length 15; 20 are of length 10 and 2 are of length 5.
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Examples of these can be reconstructed. The non-periodic cycles correspond to non-periodic
sequences of 12 0’s and 18 1’s. Let one of these be X . Then construct P as X+M . For example,

If X = (0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
then P = X + (0, 1, 2, . . . , 29) = (0, 2, 3, 3, 5, . . . , 27, 28, 29)

The same can be done for necklaces of the form XX , XXX , and XXXXXX . For example,
in a necklace of the form XXXXXX , X could be a non-periodic sequence of 2 1’s and 3 0’s,
such as

X = (1, 0, 1, 0, 0)

P = XXXXXX + (0, 1, 2, . . . , 29)

= ([1, 1, 3, 3, 4], [6, 6, 8, 8, 9], . . . , [26, 26, 28, 28, 29]).

There is a symmetry between r and m + 1 − r. If m + 1 − r = 6 and r = 4, then m
is still 9. The number of cycles for n = T9 + 4 = 49 is the same as for n = T9 + 6 = 51,
since they both correspond to necklaces with 4 beads of one colour and 6 of another.

Theorem 58. n1 = Tm + r and n2 = Tm + (m+ 1− r) have the same number of cycles.

Proof. The numbers r and m + 1 − r are interchangeable in the necklaces. Note that
if r = 0, then Tm and Tm + m + 1 = Tm+1 have the same number of standard cycles,
namely 1. 2

6 Goat restoration

The original goat problem is returned to with a different question. Will the goats ever
end up in their original groups? Clearly, this is only possible if the original groups
form a partition which lies in a cycle, for otherwise the same partition will not recur.
For example, if there are 14 goats initially divided into two groups of 7, then those
groups cannot recur.

Claim 59. If there are n goats and their initial groups form a standard partition, then it is
possible to restore them to their initial groups. If n = Tm, then this can be done in m steps;
otherwise in m+ 1 steps.

A proof will only be outlined, and a corresponding method. Note that rule R that
was originally applied to the goats is not deterministic when considering individual
goats, in the sense that it does not define which goat is selected from each group when
reforming - any goat may be taken from its group. To restore goats to their original
groups, each goat is coloured according to its original group, and the coloured groups
must then be restored.

Definition 60. A group with only one colour is monochrome; otherwise, it is polychrome.
A colour is distributed if no group has more than one instance of it. A colour is restored if
all of its instances are in one group. The successive partitions are notated as Gj where
G0 is the original partition and Gk is the partition after k applications of rule R.

14



The modified rule R is as follows. R operates in the usual way on monochrome
groups, taking one colour from each of these to the next new group. For polychrome
groups, it takes a distributed unrestored colour from each group and places it in a
new group, where it becomes restored. If there are two distributed colours, then it can
take either one. Two modifications are required. If some group in G0 has two more
elements than the next smallest group, then R moves the least frequent colour from
the polychrome group in G1 to G2. The reason for this is that a restored group would
not otherwise have enough “padding” to make it to the end. The second modification
is that if G1 has two restored letters, then one of them must be moved.

A few examples are illustrated in Figure 15 - colours are indicated with letters, and
new groups are indicated in bold.

cc,abc c,ac,bca,b,ccc 

b,ccc,abc cc,bc,abca,bb,cccc c,c,ac,bbc

b,c,dd,abcd d,acd,bbcda,bb,cc,ddd ad,bbd,ccd

b,cc,abc c,ac,bbca,bb,ccc 

G0 G1 G2 

G0 G1 G2 G3 

G0 G1 G2 G3 

G0 G1 G2 

1. 

2. 

3. 

4. 

Figure 15: Goat restoration examples.

In the first example, both a and b are distributed in G1 and restored, so one of them
is moved to a new group. In the second example, the distributed letter b from G1 was
not moved to the new group in G2, but a was moved instead. If b had been moved, then
G2 would have been (cc, ac, bbc) and both a and b would not have enough padding. In
the third example there was a choice of applying R to b or to c in G1. In the fourth
example R applies three times without complications.

What remains to be proved is that it is always possible to apply R; that is, there is
always a distributed letter after G0. For n = Tm, restoring the goats requires m moves,
since R applies once to each letter starting with G0 - see the fourth example in the list
above, where n = T3. For n = Tm + r < Tm+1, the partition cycle requires m+ 1 moves
to reach the starting partition, so G0 cannot be restored in fewer than m+ 1 moves.
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7 Summary

The goat problem introduced an operation R on groups of goats, in which each group
sends one element to form a new group. The problem was abstracted to an operation
H on a partition P of n, and the minimally repeating sequence H∗(P ) was introduced.
A standard partition of n = Tm + r < Tm+1, where Tm and Tm+1 are triangle numbers,
was defined, and properties of cycles were explored. It turned out that if r = 0, then
there is one standard cycle, of length 1. If r > 1, then the standard cycles are of length
m + 1 or a divisor of m + 1. The operation P − M gives a sequence X of r 1’s and
m+ 1− r 0’s, and the cycles of P correspond to rotations of X .

This let us equate cycle with necklaces formed from P −M for standard P ’s. Some
necklaces are periodic, corresponding to shorter cycles. Equations for the number of
cycles for n were developed. Inverses of H were introduced and a method was given to
determine the number of inverses of a given partition P , and how to determine them.

An application of this work showed that every cycle of standard partitions contains
an entry point outside the cycle. Finally, the topic of goats was returned to, asking
whether it is possible to return them to their original groups by repeated applications
of R. We claimed that it is possible if the goats are initially divided into a standard
partition, and not otherwise, and that it requires exactly m+1 divisions for n = Tm + r
if r > 0, and exactly m divisions for n = Tm. It has been left as an open problem
whether only standard partitions form cycles, though this seems very plausible.

An interesting, almost amazing aspect of the topic is the role of triangle numbers in
standard partitions and in cycles. Equally fascinating is the isomorphism of standard
cycles with necklaces composed of r white beads and m+ 1− r black beads.
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