Parabola Volume 59, Issue 2 (2023)

The beautiful inequality $\pi^e < e^{\pi}$ Kyumin Nam¹

1 Introduction

Comparing π^e and e^{π} without a calculator is a problem that was known for a while. Also, this problem is in some mathematics books, too. This problem is not hard to solve, and if we solve this problem, then we obtain $\pi^e < e^{\pi}$.

Actually, we can calculate the values of π^e and e^{π} . Using a calculator, we obtain

 $\pi^e = 22.45915771836104547342715220454373502758931513399669224920 \\ e^\pi = 23.14069263277926900572908636794854738026610624260021199344$

which directly shows that $\pi^e < e^{\pi}$. However, in this paper, we'll introduce some proofs of the inequality $\pi^e < e^{\pi}$ and for more generalized inequalities, too.

2 Some proofs of the inequality $\pi^e < e^{\pi}$

First, we'll present some known proofs of the inequality $\pi^e < e^{\pi}$.

Theorem 1. $\pi^e < e^{\pi}$.

The following proof is well-known and is introduced as a solution in books containing this problem.

Proof. Consider the function $y = x^{\frac{1}{x}}$. Then, $y' = x^{\frac{1}{x}-2}(1 - \ln x)$ so function $y = x^{\frac{1}{x}}$ has maximum value at x = e. Thus,

$$e^{\frac{1}{e}} > \pi^{\frac{1}{\pi}}$$

so $\pi^e < e^{\pi}$.

¹Kyumin Nam is a student at Incheon Shinjeong Middle School.

Similarly, we can consider $y = \frac{\ln x}{x}$ using same approach as above [5]. *Proof.* Consider the function $y = \frac{\ln x}{x}$. Then, $y' = \frac{1 - \ln x}{x^2}$ so function $y = \frac{\ln x}{x}$ has maximum value at x = e. Thus, $\frac{\ln e}{e} > \frac{\ln \pi}{\pi}$

so $\pi^e < e^{\pi}$.

Also, we can use the fact that $e^x > x + 1$ for all x > 0. *Proof.* Since $e^x > x + 1$ for all x > 0, letting $x = \frac{\pi}{e} - 1$ yields

$$e^{\frac{\pi}{e}-1} > \frac{\pi}{e}$$

so $\pi^e < e^{\pi}$.

The next proof was found by Chakraborty [1] using an area argument. *Proof.* The area of the rectangle consisting of points (e, 0), $(\pi, 0)$, $(\pi, 1/e)$, (e, 1/e) is greater than the area enclosed by the lines y = 1/x, y = 0, x = e, $x = \pi$. Therefore,

$$\ln \pi - 1 = \int_{e}^{\pi} \frac{dx}{x} < \frac{1}{e}(\pi - e) = \frac{\pi}{e} - 1$$

so $\pi^e < e^{\pi}$.

Using same approach with $y = \ln x$ yields the following proof from [2]. *Proof.* The area of the rectangle consist of points (e, 0), $(\pi, 0)$, $(\pi, \ln \pi)$, and $(e, \ln \pi)$ is greater than the area enclosed by $y = \ln x$, y = 0, x = e, $x = \pi$. Therefore,

The next proof is by Chakraborty and Mukherjee [3] using a simple inequality that can be easily proved by elementary calculus.

Proof. Since $x - 1 > \ln x$ for all x > 1, letting $x = \frac{\pi}{e}$ yields $\ln\frac{\pi}{e} < \frac{\pi}{e} - 1$

$$y = x - y = \ln x$$

$$y = \ln x$$

$$1 \quad \pi/e$$

The next proof is found by Haque [4] also using a simple inequality that can be easily proved by elementary calculus. *Proof.* Since
$$e^{x-1} - 1 > 0$$
 for all $x > 1$,

$$0 < \int_{1}^{\pi/e} \left(e^{x-1} - 1 \right) \, dx = \frac{e^{\pi/e} - \pi}{e}$$

so $\pi^e < e^{\pi}$.

so $\pi^e < e^{\pi}$.

1

The following proofs from [8, 9, 11] follow a similar approach as the proofs above. *Proof.* Since $1 - \frac{e}{x} > 0$ for all x > e,

$$0 < \int_{e}^{\pi} \left(1 - \frac{e}{x}\right) \, \mathrm{d}x = \pi - e \ln \pi$$

 $-y = 1 - \frac{e}{x}$

→ x

so $\pi^e < e^{\pi}$.

Proof. Since $e^x - ex^{e-1} > 0$ for all x > e,

$$0 < \int_{e}^{\pi} \left(e^{x} - ex^{e-1} \right) \, \mathrm{d}x = e^{\pi} - \pi^{e}$$

so $\pi^e < e^{\pi}$.

Proof. Since $\frac{\ln x - 1}{x^2} > 0$ for all x > e,

$$0 < \int_{e}^{\pi} \frac{\ln x - 1}{x^2} \, \mathrm{d}x = \frac{\ln e}{e} - \frac{\ln \pi}{\pi}$$

so $\pi^e < e^{\pi}$.

 π

e

	$y = e^x - ex$	e-1
e	$\begin{array}{c} & \\ \pi \end{array} x \end{array}$	

3 Generalisation of the inequality $\pi^e < e^{\pi}$

We can substitute π by any real number b > e in the proofs introduced in Section 2, to prove the more generalized inequality $b^e < e^b$.

Theorem 2. For all real numbers b > e, $b^e < e^b$.

Proof. Substitute π by *b* in the proofs introduced in Section 2.

Also, we can consider the most general inequality $b^a < a^b$ where e < a < b. Proof of this inequality can be completed by a suitable transformation of proofs in Section 2.

Theorem 3. For all real numbers a and b with $e \le a < b$, $b^a < a^b$.

The following proof from [10] is obtained by substituting $\log_a x$ where $e \le a$ for $\ln x$ in the proof of Chakraborty and Mukherjee [3].

Proof. Since $x - 1 \ge \log_a x$ for $a \ge e$, letting $x = \frac{b}{a}$ yields

$$\log_a \frac{b}{a} < \frac{b}{a} - 1$$

We now present a proof of Gallant [6] that appears to use almost the same approach as the second proof in Section 2 but actually uses a completely different approach. *Proof.* Let m_A be the gradient of line \overline{OA} where O(0,0) and A is any point on function $y = \ln x$, and write $A(a, \ln a)$ and $B(b, \ln b)$ where $e \le a < b$. Then $m_A > m_B$, so

$$\frac{\ln a}{a} > \frac{\ln b}{b} \,.$$

It follows that $b^a < a^b$.

so $b^a < a^b$.

y = x - 1 $y = \log_a x$ $1 \quad b/a \qquad \qquad x$

4 Conclusion

In this article, we provided some known proofs of the beautiful inequality $\pi^e < e^{\pi}$. Also, we proved more general inequalities. There are several known proofs that have not been introduced in this article. But even though a lot of proofs are known, I have no doubt that there are a lot of undiscovered proofs and they are worth discussing, sharing and presenting.

Acknowledgements

I would like to thank my family for their support. Also, I really want to thank Dr. Thomas Britz, the chief editor of *Parabola* for his help in revising and polishing this article.

References

- [1] B. Chakraborty, A visual proof that π^e < e^π, The Mathematical Intelligencer 41(1) (2023), 56, https://doi.org/10.1007/s00283-018-9816-4, last accessed on 2023-08-02.
- [2] K. Nam, A visual proof that $e < b \Rightarrow b^e < e^b$, OSF Preprints (2023), https://doi.org/10.31219/osf.io/ehjvs, last accessed on 2023-08-02.
- [3] A. Mukherjee and B. Chakraborty, Yet another visual proof that π^e < e^π, *The Mathematical Intelligencer* 41(2) (2019), 60, https://doi.org/10.1007/s00283-018-09867-3, last accessed on 2023-08-02.
- [4] N. Haque, A visual proof that e < A ⇒ e^A > A^e, The Mathematical Intelligencer 42(3) (2020), 74, https://doi.org/10.1007/s00283-019-09964-x, last accessed on 2023-08-02.

- [5] F. Nakhli, Proof without words: π^e < e^π, Mathematics Magazine 60(3) (1987), 165, https://doi.org/10.1080/0025570x.1987.11977293, last accessed on 2023-08-02.
- [6] C.D. Gallant, Proof without words: Comparing B^A and A^B for A < B, Mathematics Magazine 64(1) (1991), 31, https://doi.org/10.1080/0025570x.1991.11977569, last accessed on 2023-08-02.
- [7] R. Farhadian, A generalized form of a visual proof of π^e < e^π, *The Mathematical Intelligencer* 44(3) (2022), 191, https://doi.org/10.1007/s00283-021-10161-y, last accessed on 2023-08-02.
- [8] K. Nam, Another visual proof that $e < b \Rightarrow b^e < e^b$, OSF Preprints (2023), https://doi.org/10.31219/osf.io/un78r, last accessed on 2023-08-02.
- [9] K. Nam, One more visual proof that $e < b \Rightarrow b^e < e^b$, OSF Preprints (2023), https://doi.org/10.31219/osf.io/y7zb2, last accessed on 2023-08-02.
- [10] K. Nam, A visual proof that $e \le a < b \Rightarrow b^a < a^b$, OSF Preprints (2023), https://doi.org/10.31219/osf.io/8hs6x, last accessed on 2023-08-02.
- [11] A. Youcis, A question comparing π^e to e^{π} , Mathematics Stack Exchange (2020), https://math.stackexchange.com/q/338524, last accessed on 2023-08-02.