
Parabola Volume 59, Issue 3 (2023)

On the general formula of Alcuin’s sequence:
A combinatorial and algorithmic approach

Md Faiyaz Siddiquee1

1 Introduction

Let T (P) be the number of non-congruent triangles with perimeter P and integral side
lengths. Alcuin’s Sequence is the infinite sequence T (3), T (4), T (5), In Ross Hons-
berger’s book Mathematical Gems, Vol. 3 [1], the author acknowledges a solution using
partitions, by George Andrews, to the problem of determining T (P). Andrew’s solu-
tion yields the following formula, in which [x] is the nearest integer to x.

Theorem 1.

T (P) =

[
P 2

48

]
, if P is even;[

(P + 3)2

48

]
, if P is odd.

In this paper, I will present an algorithm and an elementary derivation of this formula
for T (P) without the use of partitions. For computational verification and graphing
purposes, the Python Programming Language and its Matplotlib library will be used.

2 Two conditions

Given a natural number P ≥ 3, we would like to find T (P), the number of non-
congruent triangles with perimeter P and integral side lengths.

a

b c

The condition on a, b, c is
a+ b+ c = P . (1)

We also observe the inequalities
a+ b > c

a+ c > b (2)
b+ c > a .

1Md Faiyaz Siddiquee is a 9th grade student at DPS STS School, Dhaka, Bangladesh.

1

We shall first find out how many ordered triplets (a, b, c) satisfy condition (1). Then,
we will use our results to find the number of unordered triplets {a, b, c} satisfying this
condition. Afterwards, we shall find out how many of the unordered triplets {a, b, c}
that follow condition (1) also satisfy the inequalities (2).

Finding the number of ordered triplets satisfying condition (1)

Consider a row of P balls, and place two dividing lines in the spaces between the balls,
representing the two + signs of the equation a+ b+ c = P :

a︷ ︸︸ ︷ b︷ ︸︸ ︷ c︷ ︸︸ ︷
The lines divide the P balls into three parts containing a, b and c balls, respectively.

In the figure above, a = 3, b = 4 and c = 2. By placing the two dividers in all possible
ways between the balls, we will get all ordered positive-integer triples (a, b, c) whose
sum is P . The number of these triples is therefore the same as the number of ways in
which to choose the positions of the two dividing lines. There are P−1 spaces between
the balls, and the order of the dividing lines does not matter. The number of ways in
which to choose the two positions for the lines is therefore(

P − 1

2

)
=

(P − 1)!

2!
(
(P − 1)− 2

)
!
=

(P − 1)(P − 2)

2
.

This number is called total ordered in the generalised algorithm (see Section 4).
We have found the total number of ordered triplets (a, b, c) satisfying condition (1). Now,
we will find the number of unordered triplets {a, b, c} satisfying this condition.

Finding the number of unordered triplets satisfying condition (1)

The unordered triplets {a, b, c} must fall into one and only one of the following cases:

Case 1 a, b, c are distinct.
Case 2 Exactly two of the numbers a, b, c are identical.
Case 3 a, b, c are all the same number.

Let us start with the third case. If P is divisible by 3, then there is exactly one triple
{a, b, c, }, namely the one in which a = b = c = P

3
. Otherwise, there is no triple. This

number - 1 or 0 - is called case 3 in the generalised algorithm.
Now consider the second case. Two of the numbers a, b, c are the same; we denote

them by x and denote the third number by y. Then 2x+y = P , so x = P−y
2

. Since y ≥ 1,

x ≤ P − 1

2
.

2

Since this fraction might not be a natural number, we can round it down to its nearest
integer with the floor function and thereby get a precise upper bound:

x ≤
⌊
P − 1

2

⌋
.

The unordered triplets {a, b, c} for the second case therefore range from {1, 1, P − 2} to
{xmax, xmax, 1 or 2}, where xmax =

⌊
P−1
2

⌋
is the number of possible unordered triplets.

Note that these triples include any triple counted in Case 3. Since Case 2 only
includes triples with exactly two identical elements, the number of unordered triples
in Case 2, expressed as case 2 in the generalised algorithm, is

case 2 = xmax − case 3 =

⌊
P − 1

2

⌋
− case 3 .

Let us now look at Case 1. We will find the number of ordered triplets corresponding
to Case 2 and 3 and subtract their sum from total unordered. This will give us the
number of ordered triplets for Case 1, from which we will find the number of unordered
triples for Case 1.

The ordered triplets corresponding to Case 2 and 3 are

(x, x, y) , (x, y, x) , (y, x, x) and (x, x, x)

so the number of ordered triplets corresponding to these cases is

3× case 2 and 1× case 3 = case 3,

respectively. Hence, the number of ordered triplets corresponding to Case 1 is

total ordered− (3× case 2+ case 3) .

We divide this number by 6 to find the number of unordered triples in Case 1, since each
unordered triple {a, b, c} of distinct numbers can be ordered in 3! = 6 different ways:

(a, b, c) , (a, c, b) , (b, a, c) , (b, c, a) , (c, a, b) , (c, b, a) .

The number of unordered triples in Case 1 is therefore

case 1 =
1

6

(
total ordered− 3× case 2− case 3

)
.

3

Unordered triplets satisfying condition (1) but not inequalities (2)

When looking at the unordered triples, we can assume that the side lengths satisfy
a ≤ b ≤ c. Then

a+ c > b

b+ c > a .

If condition (2) is not satisfied, then the remaining inequality a + b > c cannot be true.
Let us find the number of unordered triplets for which a+ b ≤ c.

First note that c ≥ a + b ≥ 2 and that c = P − a − b ≤ P − 2. Also, note that
c ≥ a + b = P − c, so c ≥ P

2
. Since c is an integer, c ≥

⌈
P
2

⌉
where ⌈x⌉ is the ceiling

function that rounds any real number x up to its nearest integer.
Suppose that c ≥

⌈
P
2

⌉
. To find the number of unordered pairs {a, b} that satisfy

1 ≤ a, b ≤ c and a+ b = P − c, we could start by setting a = 1 and b = P − c− 1. Then
we can increase a by 1 and decrease b by 1 to get another pair, and continue until a and
b meet, when a = b = P−c

2
, or when a = b− 1 = P−c−1

2
. The number of unordered pairs

{a, b} is then P−c
2

when P − c is even and P−c−1
2

when P − c is odd. We can write these
numbers compactly with the one expression⌊

P − c

2

⌋
.

To find the number of unordered triplets {a, b, c} satisfying condition (1) but not con-
dition (2), we have to sum over

⌊
P−c
2

⌋
, where c ranges from

⌈
P
2

⌉
to P − 2, or in other

words, P − c ranges from 2 to P −
⌈
P
2

⌉
=

⌊
P
2

⌋
:

⌊P
2 ⌋∑

i=2

⌊
i

2

⌋
. (3)

This sum is essentially complementary condition in the generalised algorithm.
This value is subtracted from case 1 + case 2 + case 3 to get the number of un-
ordered triples {a, b, c} satisfying conditions (1) and (2).

3 An explicit formula for T(P)

To express the sum (3) by the explicit expressions such as those in Theorem 1, we use
the formula

n∑
k=1

k = 1 + 2 + · · ·+ n =
1

2
n(n+ 1) . (4)

In (3), we observe that the summand
⌊
i
2

⌋
is i

2
when i is even, and is i−1

2
when i is odd.

Suppose that the upper bound of (3), Q =
⌊
P
2

⌋
, is even. Then

Q∑
i=2

⌊
i

2

⌋
=

Q∑
i=2, 2|i

i

2
+

Q−1∑
i=3, 2∤i

i− 1

2
=

Q∑
i=2, 2|i

i

2
+

Q−2∑
i=2, 2|i

i

2
=

Q/2∑
j=1

j +

(Q−2)/2∑
j=1

j =
Q

2
+ 2

(Q−2)/2∑
j=1

j .

4

Now we apply the formula (4) to get

⌊P
2 ⌋∑

i=2

⌊
i

2

⌋
=

Q

2
+

Q− 2

2

(Q− 2

2
+ 1

)
=

Q2

4
.

Next, suppose that Q =
⌊
P
2

⌋
is odd:

Q∑
i=2

⌊
i

2

⌋
=

Q−1∑
i=2, 2|i

i

2
+

Q∑
i=3, 2∤i

i− 1

2
=

Q−1∑
i=2, 2|i

i

2
+

Q−1∑
i=2, 2|i

i

2
=

(Q−1)/2∑
j=1

j +

(Q−1)/2∑
j=1

j = 2

(Q−1)/2∑
j=1

j .

By applying the formula (4), we get

⌊P
2 ⌋∑

i=2

⌊
i

2

⌋
=

Q− 1

2

(Q− 1

2
+ 1

)
=

Q2 − 1

4
. (5)

We will now find an explicit expression for the number of unordered triples {a, b, c}
that satisfy conditions (1) and (2). First note that

T (P) = case 1+ case 2+ case 3−
⌊P

2 ⌋∑
i=2

⌊
i

2

⌋

=
1

6

(
total ordered− 3× case 2− case 3

)
+ case 2+ case 3−

⌊P
2 ⌋∑

i=2

⌊
i

2

⌋

=
1

6

(
total ordered+ 3× case 2+ 5× case 3

)
−
⌊P

2 ⌋∑
i=2

⌊
i

2

⌋

=
1

6

(
total ordered+ 3

(⌊P − 1

2

⌋
− case 3

)
+ 5× case 3

)
−
⌊P

2 ⌋∑
i=2

⌊
i

2

⌋

=
1

6

(
total ordered+ 3

⌊
P − 1

2

⌋
+ 2× case 3

)
−
⌊P

2 ⌋∑
i=2

⌊
i

2

⌋

=
1

6

(
(P − 1)(P − 2)

2
+ 3

⌊
P − 1

2

⌋
+ 2× case 3

)
−
⌊P

2 ⌋∑
i=2

⌊
i

2

⌋
.

The term
⌊
P−1
2

⌋
depends on whether P is even or odd; the term case 3 depends on

whether P is divisible by 3; and the sum depends on whether Q =
⌊
P
2

⌋
is even or

odd, which in turn depends on which remainders P has when divided by 4. This
gives twelve different cases to consider, each of which we can express by the remain-
der r when dividing P by 12; that is, P = 12k + r where k is some integer and
r ∈ {0, 1, . . . , 11}. For each value of r, we can calculate each term of the expression
for T (P) above to get the expression for T (P). For instance, for r = 5, case 3 = 0

5

since P = 12k + 5 is not divisible by 3. Also,
⌊
P−1
2

⌋
=

⌊
12k+4

2

⌋
= 6k + 2 = P−1

2
, and

Q =
⌊
P
2

⌋
= P−1

2
= 6k + 2 is even, so

⌊P
2 ⌋∑

i=2

⌊
i

2

⌋
=

Q2

4
=

(P − 1)2

16
.

Therefore,

T (P) =
1

6

(
(P − 1)(P − 2)

2
+

3(P − 1)

2
+ 2× 0

)
− (P − 1)2

16
=

P 2 + 6P − 7

48
.

The calculated terms for all r = 0, 1, . . . , 11 are given in the table below.

r

⌊
P − 1

2

⌋
case 3 Q =

⌊
P
2

⌋
Q Even/Odd

⌊P
2 ⌋∑

i=2

⌊
i

2

⌋
T (P)

0 P−2
2

1 P
2

Even P 2

16
P 2

48

1 P−1
2

0 P−1
2

Even (P−1)2

16
(P+3)2−16

48

2 P−2
2

0 P
2

Odd P 2−4
16

P 2−4
48

3 P−1
2

1 P−1
2

Odd (P−1)2−4
16

(P+3)2+12
48

4 P−2
2

0 P
2

Even P 2

16
P 2−16

48

5 P−1
2

0 P−1
2

Even (P−1)2

16
(P+3)2−16

48

6 P−2
2

1 P
2

Odd P 2−4
16

P 2+12
48

7 P−1
2

0 P−1
2

Odd (P−1)2−4
16

(P+3)2−4
48

8 P−2
2

0 P
2

Even P 2

16
P 2−16

48

9 P−1
2

1 P−1
2

Even (P−1)2

16
(P+3)2

48

10 P−2
2

0 P
2

Odd P 2−4
16

P 2−4
48

11 P−1
2

0 P−1
2

Odd (P−1)2−4
16

(P+3)2−4
48

The parity of P depends on the parity of r: if r is even, then P = 12k + r is also even,
and vice versa. From the table, we see that, when P is even,

T (P) =
P 2 +m

48

where m ∈ {0,−4,−16, 12}. For each of these numbers m, |m| is less than 48
2

. Hence,
for the case when P is even, we can express T (P) more compactly as:

T (P) =

[
P 2

48

]
where [x] rounds a number x up or down to its nearest integer.

6

Similarly, for the case when P is odd,

T (P) =
(P + 3)2 +m

48

where m ∈ {−16, 12,−4, 0}, so

T (P) =

[
(P + 3)2

48

]
This proves Theorem 1.

4 The generalised algorithm

In the previous section, we derived the algebraic expressions for T (P) in Theorem 1
from the observations made in Section 2. This involved lengthy calculations and case-
by-case considerations. We could have saved some of this effort by using the following
generalised algorithm for calculating T (P) for any given perimeter P . The algorithm
is presented as a function in Python Programming Language below.

def T (P) :1

t o t a l o r d e r e d = ((P − 1) * (P−2))/22

i f P % 3 == 0 :3

c a s e 3 = 14

e l s e :5

c a s e 3 = 06

7

c a s e 2 = i n t ((P−1)/2) − c a s e 38

9

c a s e 1 = (t o t a l o r d e r e d − (3 * c a s e 2) − c a s e 3)/610

to ta l unordered = c a s e 1 + c a s e 2 + c a s e 311

12

Q = i n t (P/2)13

14

i f Q % 2 == 0 :15

complementary condition = (Q* * 2) / 416

e l s e :17

complementary condition = ((Q**2) −1)/418

19

r e s u l t = to ta l unordered − complementary condition20

re turn r e s u l t21

7

Computational Verification

We will now computationally verify our algorithm by defining another function that
computes T (P) for a given perimeter P by going through each possible case. The
output of our generalised algorithm is then compared with the results of the brute force
algorithm. The brute force algorithm is written in the Python Programming Language
as follows:

def t r i a n g l e c o u n t (P) :
count = 0
l i 1 = []
f o r a in range (1 , P + 1) :

f o r b in range (1 , P + 1) :
f o r c in range (1 , P + 1) :

l i 2 = [a , b , c]
l i 2 = sor ted (l i 2)
i f a+b+c == P :

i f a+b > c and a+c > b and b+c > a :
i f l i 2 not in l i 1 :

count += 1
l i 1 . append (l i 2)

re turn count

Using the following code, we can check whether or not our generalised algorithm is
correct and plot a graph of T (P) as a function of P . We need to check our results within
a certain range of P and choose the range P = 1, . . . , 100.

import m a t p l o t l i b . pyplot as p l t

s t a r t = 1
end = 100
e r r o r = 0

l i P = []
l i T P = []

f o r P in range (s t a r t , end + 1) :
l i P . append (P)
l i T P . append (T (P))
i f T (P) != t r i a n g l e c o u n t (P) :

e r r o r += 1

p r i n t (e r r o r)
p l t . f i g u r e (dpi = 1200)
p l t . p l o t (l i P , l i T P)
p l t . s a v e f i g (” Figure 3 . png ”)

8

Running the program, we find that error = 0, which means that our algorithm is
correct within the range. We also get the following plot of T (P) for P = 1, . . . , 100:

This graph is shown as a continuous graph but the domain of the function T (P) is
only the natural numbers. The data points were connected with straight lines only to
illustrate the trend between two adjacent values of T (P).

From the jig-jagged structure of the graph, T (P) does not seem like a simple poly-
nomial function. This is because the algorithm runs differently for even and odd num-
bers. This is reflected in the piece-wise formula in Theorem 1.

5 Further experimentation

We can also predict the best-fit polynomial equation representing the long-term trend
of T (P). To do this, we can find the arithmetic mean of the even and odd expressions
for T (P). We can ignore the rounding of the expressions since they will have negligible
effect on T (P) for large values of P . We find the value approximating T (P) for large
values of P to be

Tavg(P) =
P 2 + 3P + 9/2

48
≈ P (P + 3)

48
.

Plotting Tavg(P) and T (P) simultaneously for P = 1, . . . , 50 gives the following graph:

9

Plotting T (P) and Tavg(P) simultaneously for a large range, say P = 1, . . . , 2000, shows
the large scale behaviour of T (P):

At this scale, it appears as if both graphs coincide.

6 Conclusion

We have explored the problem of finding the number T (P) of distinct triangles with
a given perimeter P and integral side-lengths. Through a combinatorial approach, we
have established a formula and an algorithm for calculating T (P). We see that the
overall behavior of T (P) is quadratic.

10

Acknowledgement

I would like to express my gratitude to the Editor in Chief of Parabola, Dr. Thomas
Britz, for his constant support throughout the revisions of the paper. I am grateful for
his suggestions and editing for better presentation and delivery of ideas.

References

[1] R. Honsberger, Mathematical Gems, Vol. 3, Mathematical Association of America,
Washington, D.C., 1985.

[2] Wolfram Mathworld, Alcuin’s Sequence,
https://mathworld.wolfram.com/AlcuinsSequence.html,
last accessed on 2023-07-02.

[3] OEIS, A005044, https://oeis.org/A005044, last accessed on 2023-07-02.

11

https://mathworld.wolfram.com/AlcuinsSequence.html
https://oeis.org/A005044

	Introduction
	Two conditions
	An explicit formula for T(P)
	The generalised algorithm
	Further experimentation
	Conclusion

