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Some results on odd exponents in Fermat’s Last Theorem
Kelvin Muzundu1

1 Introduction

The assertion that the equation
zn = xn + yn (1)

has no non-trivial integer solutions for any positive integer n greater than 2 is known
as Fermat’s Last Theorem (FLT). It was first stated in 1637 by French Mathematician
Pierre de Fermat. The famous proof [7] by British Mathematician Andrew Wiles relies
on advanced and relatively modern number-theoretic techniques. Prior to Wiles’ proof,
various authors including some prominent mathematicians proved FLT for specific
values or classes of n. Fermat himself proved the result for n = 3 and n = 4, after
developing and applying a technique known as the method of infinite descent. This
is a form of proof by contradiction where it is assumed that if a statement is true for
a given number, then it would be true for a smaller number, which would lead to an
infinite descent and ultimately result in a contradiction.

Euler in 1770 also proved FLT for n = 3 and n = 4 by different methods, although
the proof for n = 3 had an error. His methods were adopted by others, who corrected
the error and also applied them in other problems. In 1823, Sophie Germain proved
FLT for n = 5, and Dirichlet and Lagrange in 1825 also proved it for n = 5 by different
methods. Lame̋ in 1839 established FLT for the case n = 7. Another breakthrough came
in 1847 when Kummer proved FLT for a class of prime numbers known as the regular
primes. After Kummer’s work, FLT was known to be true for the odd primes below
100 except 37, 59 and 67.

Faltings’s Theorem established in 1983 was another breakthrough in the proof FLT.
This is a result in arithmetic geometry, and one its consequences is that Equation (1)
has at most finitely many pairwise coprime solutions for any fixed n ≥ 4. The proofs
of FLT for specific values of n tended to be ad hoc in nature and could therefore not
be generalized to arbitrary n. For more details on these matters and for a complete
historical account, we refer the reader to [5].

In this article, elementary mathematics are used to establish results that describe
conditions under which Equation (1) does not hold for odd values of n greater than 9.
The results do not establish a new proof of FLT but only assert that Equation (1) does
not hold for any odd integer n > 9 when certain natural assumptions are placed on x,
y and z. Although Equation 1 is stated in terms of non-zero integers, it is well known
and can easily be verified that it is enough to consider it only for positive integers.
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2 Results

The main results of the article are presented in this section, which show that when x,
y and z satisfy certain conditions, then Equation (1) does not hold. We begin with the
following theorem.

Theorem 1. There are no positive integers x, y, z such that p divides y or q > 1 and q divides x,
and zn = xn + yn holds for any odd positive integer n > 9, where p = z − x and q = z − y.

Proof. Suppose that positive integers x, y and z exist such that Equation (1) holds for
an odd positive integer n > 9. We assume without loss of generality that x, y and z are
in their lowest terms and that y > x. It suffices to establish the result for prime values
of n, for if n is composite and has a prime factor n1, then Equation (1) can be written in
terms of the prime exponent n1 and powers of x, y and z.

Now, the equation p = z − x means that zn = (x + p)n, and so it follows from
Equation (1) that

yn = npxn−1 +
n(n− 1)

2
p2xn−2 + · · ·+ npn−1x+ pn , (2)

which implies that p divides yn. If p and xn−1 in Equation (2) have a common factor,
then x, y and z will have a common factor, which contradicts the fact that they are in
their lowest terms. Equation (2) and the assumption that p divides y therefore implies
that p must divide n, and because n is odd, p3 will divide the term n(n−1)

2
p2xn−2 in the

sum in Equation (2). It follows that p2 will divide the term nxn−1, and because p and x
cannot have a common factor, we deduce that p2 divides n. But this contradicts the fact
that n is prime. This completes the proof of the first part of the result. The second part
is proved by using similar arguments. 2

In Theorem 1, it was assumed that q > 1 and q divides x. In the next result, we
establish that Equation (1) still does not hold when q > 1 and does not divide x. To
prove it, the following lemma will be required.

Lemma 2. If there are positive integers x, y and z such that zn = xn + yn holds for any odd
integer n > 9, then there are positive integers b, c, d such that dy = cx− bq, where q = z − y.

Proof. Suppose that there are positive integers x, y and z such that Equation (1) holds,
for some odd n > 9. Then z > x and z > y, and so there are positive integers p and q
such that z = x+ p = y+ q. As before, we assume without loss of generality that y > x.
Then, clearly, y > p, x > q and p > q. Now, since n > 9 and n is odd, Equation (1) may
be written as

zn = (x+ y)(xn−1 − xn−2y + · · · − xyn−2 + yn−1) ,

which implies that x + y divides zn. Therefore if a is the greatest common divisor of
x+ y and z, then a > 1. Let b and c be positive integers such that x+ y = ab and z = ac.
It follows from p+ q = 2z− (x+ y) that a divides p+ q. Then x− q = y− p = z− (p+ q)
implies that a divides x− q and y− p. Since a divides p+ q and x− q = y− p, there are
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positive integers d1 and d2 such that p + q = ad1 and x − q = y − p = ad2. Therefore,
ad1 + ad2 = p + q + x − q = x + p = z, and comparing with z = ac, we deduce that
c = d1+d2. In addition, ab = x+y = x+z−q = ac+ad2 implies that b = d1+2d2 = c+d2.

From z = ac, z = y + p and x − q = ad2, we get that
z

c
=

y + q

c
=

x− q

d2
, which can be

rearranged as d2y = cx − (c + d2)q. It follows from b = c + d2 that d2y = cx − bq, and
taking d = d2, the result follows. 2

Theorem 3. There are no positive integers x, y and z such that q > 1, q does not divide x and
zn = xn + yn holds for any positive odd integer n > 9, where q = z − y.

Proof. Suppose that positive integers x, y and z exist such that Equation (1) holds for
some odd integer n > 9, and that x, y and z are assumed to be in their lowest terms and
y > x. Now, the equation q = z − y implies that zn = yn + nqyn−1 + · · · + nqn−1y + qn.
Comparing with Equation (1) gives xn = nqyn−1 + n(n−1)

2
q2yn−2 + · · · + nqn−1y + qn.

Therefore, q divides xn, and because q > 1, we have that q and x have a common factor.
But since q does not divide x, there are positive integers e > 1 and f > 1 with no
common factor, such that q > e, x > f and

x =
f

e
q . (3)

Equation (3) and Lemma 2 then imply that d2ey = (cf− be)q. If q and y have a common
factor, then y and z have a common factor, which leads to a contradiction. If q and y
do not have a common factor, then y divides cf − be, and so there is a positive integer
g > 1 such that

cf − be = gy . (4)

Multiplying both sides of Equation (4) by a and using x + y = ab and z = ac leads
to the equation fz − e(x + y) = agy, which in view of z = q + y may be written as
ex−fq = (f−e−ag)y. But ex−fq = 0, which implies that f−e−ag = 0, or f−e = ag.
It follows from Equation (3) and the equation x− q = ad2 that

f − e

g
=

(f − e)q

d2e
,

which means that
g =

d2e

q
. (5)

Since x−q = y−p and b = c+d2, Equation (4) can be written as c(f−e) = g(x+q−p)+d2e.
Equation (5) then implies that c(f − e) = g(x + q − p) + gq = g(x + 2q − p). From the
equation f − e = ag, it is therefore deduced that

c(f − e) =
(f − e)

a
(x+ 2q − p) ,

which in the light of z = ac becomes z = x+2q−p. Then equation z = x+p yields that
p = q. But this means that x = y, which is not possible as it would make z irrational.
Hence, Equation (1) does not hold when q > 1 and does not divide x. 2
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Theorems 1 and 3 and the well-known fact that Equation (1) does not hold for n = 4
lead to the following corollary.

Corollary 4. There are no positive integers x, y and z such that p = z − x divides y, that
q = z − y > 1 and that zn = xn + yn holds for any positive integer n > 9.

Proof. If n has an odd factor, then the result follows immediately from Theorems 1
and 3. If n has no odd factor, then 4 divides n since n > 9, and in this case the result
follows directly from the fact that Equation (1) does not hold for n = 4. 2

In the light of Theorem 1, Theorem 3 and Corollary 4, to prove that Equation (1)
does not hold for every positive integer n > 9, one needs to prove that it does not hold
when p does not divide y and when q = 1.
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