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Applications of the Pigeonhole Principle in mathematics
Sizhe Pan'

1 Introduction

We will explore The Pigeonhole Principle, a fundamental theorem in mathematics.
Simply expressed, if you were to place at least n + 1 items (“pigeons”) in only n boxes
(“pigeonholes”), then at least one box will contain at least two items.

You might think that this is an obvious fact - when you try to fit 6 apples in 4 lunch-
boxes, it’s not possible to have only one apple in each lunchbox - and you would be
correct! This paper will explore how such a seemingly simple theorem has important
applications in more difficult mathematics, ranging from geometry to number theory
and algebra.

2 The Pigeonhole Principle

Let us state the Principle more formally:

Theorem 1 (The Pigeonhole Principle). If more than n pigeons are placed in n pigeonholes,
then at least one pigeonhole will contain at least two pigeons.

Proof. Another way to express this Principle is as follows: if no pigeonhole has least
two pigeons - that is, each pigeonhole contains at most one pigeon - then it cannot be
true that more than n pigeons were placed in these n pigeonholes. That is naturally a
true statement: if each of the n pigeonholes contains at most one pigeon, then there can
be at most n pigeons in the n pigeonholes. O

Now, if you try to place 9 apples into 4 lunch pigeonholes, then by the Pigeonhole
Principle, some lunch pigeonhole will contain at least two apples. What’s even more
cool is that some lunch pigeonhole will also contain at least three apples! Why?

Theorem 2 (The (General) Pigeonhole Principle). If more than mn pigeons are placed in n
pigeonholes, then at least one pigeonhole will contain more than m pigeons.

Proof. 1f each of the n pigeonholes contains at most m pigeons, then there can be at
most mn pigeons. This simple observation is another way to express the theorem. O
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3 Applications to problem solving

Now let’s see how the Pigeonhole Principle can be used to solve problems.

Example 3. Prove that, if we pick 6 different numbers from {1,2, ...,10}, then we can choose
two of them such that they add up to 11.

Proof. You may ask: We are picking numbers, but how does the Pigeonhole Principle
apply here?

Let 5 “pigeonholes” be the sets {1, 10}, {2,9}, {3, 8}, {4, 7}, {5, 6}, respectively. If we
pick 6 different numbers - “pigeons” - from {1,2,...,10}, then there are more pigeons
than pigeonholes, so, by the Pigeonhole Principle, some pigeonhole must contain at
least two pigeons. That is, at least one the five sets contains two of the picked numbers.
Whichever set this is, we have two numbers that add up to 11! O

Let’s now look at a geometry example.

Example 4. Given five points on the interior of a square with side length 2, prove that two of
the points at distance less than 1.5 apart.

Bonus question: What is the smallest real constant you can replace 1.5 with so that the state-
ment is still true?

Proof. The crux of this problem lies in how to set up the Pigeonhole Principle. What
are the pigeons, and what are the pigeonholes? After trying to keep the points as far
as possible from each other, we notice that this intuitively occurs when four points lie
in the four corners and the fifth lies in the middle of the square:

Here, the distances are just under the diagonal distance of a unit square, namely
V2~ 1414

which is less than 1.5! Let us prove this rigorously.
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Divide the 2 x 2 square into four 1 x 1 squares:

Since there are five points and only four 1 x 1 squares, at least one of these squares will
contain two points. These two points have distance at most v/2 < 1.5. O

4 Using the Pigeonhole Principle to obtain information

We now move onto a more complex application of the Pigeonhole Principle.

Example 5 (Based on 2021 Bored of Studies Mathematics Extension 2 Exam).
Given any 7 real numbers, prove that at least two of them, x,y, satisfy

T —y 1
< —=. 1
l4+axyl /3 @
Proof. While this problem seems difficult to approach at first, recall the tangent com-
pound angle formula:

tan A — tan B
l+tan Atan B

Also, recall that each real number x can be written as tan A for some A € (—%, g)

tan(A — B) = (2)
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Now let our 7 real numbers be tan o, tan as, . . ., tan oy where ay, as, ..., a7 € (=3, %).

We need to show that two of these seven numbers, say * = tano; and y = tanay,
satisfy the inequality (1). By the identity (2), the inequality (1) can be expressed as

| tan(a; — a;)| < L .
V3
Since tan % = \/% and tan (—%) = —\/%, and tan z is a strictly increasing function when

s
6

us
2

z € (—%,%), we can further re-express (1) as

T T
—g <oy — oy < 6
or, more simply,
T
o~y <
This gives us an idea of how to apply the Pigeonhole Principle: There are 7 numbers
in the interval (—2, Z) which has length 7, and we need the difference of two numbers
to be less than Z, exactly # of the interval length. If we choose the “pigeonholes” to be
the six intervals (—2F, —2t] (27, —%] ... (%, 37], then by the Pigeonhole Principle,
one of the pigeonholes will have two of the numbers, o;, ;. Thus, |o; — ;| < %, s0
tan o; — tan o ‘t ( )}<t T 1
= |tan(a; — a; an— = —,
1 + tan o; tan o ! 6 V3
as needed. O

We can see from this example that, while the Pigeonhole Principle might not have
obvious use in a problem when you see it for the first time, it often appears after we
perform simplifications. We can in fact generalise the above problem, as follows.

Example 6. For each positive integer n, find the smallest positive real constant C,, such that,
for any set of n + 1 distinct real numbers {1, xa, . .., x,41}, there are at least two of them, say
x = x; and y = x; with i # j, such that

x —_—
i <C,.
1+ay
Proof. Write z; = tana; where o; € (=%,%) fori = 1,2,...,n + 1. The n intervals
[—7—; + (k_nl)ﬂ, -5+ %”) for k = 1,2,...,n partition the interval [—g, g) By the Pi-
geonhole Principle, at least one of the intervals must contain at least two of the n + 1
numbers o, ay, . .., ay, say a; and ;. Then |a; — a;] < 7, s0

‘ e Bt 3 [tan(a; — ;)| < tan T
n

1 + tan o; tan o

Therefore, C,, = tan r always works! We will show that no smaller C,, works.

4



Assume that some C,, < tan = works, and write C,, = tan (X —¢) where 0 <& < T.

Foreachi=1,2,...,n+ 1, define x; = tan a; where
k—1
041:—?4—5, ai:—z—i—(—)ﬂfori:l...,n, and anH:z—s.
2 2 n 2

By assumption, we can find distinct # = z; and y = z; such that

tan o; — tan oy

<C,.

1 + tan o; tan

Thus,
m
tan|a; — a;| < C, = tan (— - €>
n
SO

s
|Oéz‘—0éj|<g—€.

But, by definition, the distance between «; and «; is at least = — ¢ or 7, both of which
are greater than ” —¢, a contradiction! Therefore, our assumption that some (), < tan 7
works, so the minimum possible C), is tan o O

Example 7 (Serbian Mathematical Olympiad 2016, by Dusan Djukic).

Suppose ay, as, . . . , axos are positive integers such that, for all n with 1 < n < 22016,

a, <2016 and ajaq---a,+ 1 isa perfect square.

Prove that at least one of the numbers ay, as, . . ., ag201s must be equal to 1.

Proof. Foreachn =1,2,...2%1 write ajay - - a, = s2—1where s, is a positive integer.
Next, write the prime factorisation of a;as - - - a,, as

bi1(n) ba(n by (n
p11( )p22( )"’pJ\IfV()

where py, ps, . .., py are the prime numbers less than 2016 and b;(n), b2(n), ..., by(n) are
non-negative integers. Define the function f : N — {0,1}" by

fln) = (cl(n), ca(n), ... ,CN(n))

where ¢;(n) = 0 if b;(n) is even, and ¢;(n) = 1 if b;(n) is odd. Since each ¢; can be either
0 or 1 - two choices - and there are N places to choose, the number of possibilities for
f(n)is 2V, Consider the last 2" + 1 products a,az - - - a,, for n = 22016 — 2N 92016 _ 5N 4
1,...,2206 By the Pigeonhole Principle, we can find at least two values f(¢) and f(u)
that are identical where 22016 — 2V < ¢ < ¢, < 22016 Gjnce

flu) = (cl(u), co(u), ... ,cN(u))
and  f(t) = (a(t),ca(t), ..., en(t))



are the same, we see that ¢;(t) = ¢;(u) foralli = 1,2,..., N. By definition, this means
that b;(¢) and b;(u) are both even or are both odd; therefore, b;(u) — b;(t) is even for all
i=1,2,...,N. We can therefore write b;(u) — b;(t) = 2k; for some integer k;; then

A1G9 -+ * Gy,
at+l...au:—

1G9 - Gy

b1(u) ba(u by (u
_pll( )pQQ()"'pA];V()

b b b

pll(t)p22(t) .. ~p1\],\’(t)

b1(u)—b1(t) ba(u)—ba(t by (u)—bn(t
:pll() 1()p22() 2()---p1\],\[() ~(t)
= pip3 Y

_ k1, ke kn2
— (p1 P ...pN) ,
Since a4 - - - a, is an integer, each k; is a non-negative integer, and so a;4;1...a, is a
perfect square!
How does this help? Define a = s, b=s; and ¢ = p’fl p§2 e plfVN ; then

a®—1 s —1 a10g * -+ Ay 9

=Gy =C .

2
u
-1 s2—1 aay--q

To complete the proof, let us assume that the statement to be proved is wrong: that is,
let us assume that each of the numbers a4, as, . . ., ax2016 is greater than 1. Then ¢ > 1, so

a? =0 —-1)F+1=bc—c"+1< (be)?.
Therefore, bc > a, so bc > a + 1. Hence,

2 —1=0bc—d°

>(@+1)P2—a’>=2a+1>a>Va>— 1= Jatas -ay > V2¢ > 227"
However, u — t < 2V, so

P —1=qu - ay—1<2016"" < 2048%" = 212"

Therefore,
222015—21“1 <2_1< 211><2N
SO
22015 _ oN=1 11 x 2V,
It follows that

22015 93 « N1 39 x 2N-1 — oN+4

Thus, 2015 < N+4,so N > 2011. But no even number except for 2 is prime, eliminating
4,6,...,2014 from being prime. Since N is the number of primes at most 2016, this
gives N < % +1=1009, so0 2011 < N < 1009, a contradiction! Thus, our assumption
is incorrect, and a,, = 1 for some n € {1,2,...,2016}. a
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