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Approximating Laplace transforms
Joshua Im1 and Jeonghyeon Seo2

1 Introduction

In mathematics, the Laplace transform is a powerful technique which helps to solve
complex differential equations by converting those into simpler algebraic equations.
In this paper, we study the Laplace transform, properties of transforms, and how they
can be approximated for functions with no or complex Laplace transform.

2 The Laplace transform

The Laplace transform turns a function into another function by a given rule.

Definition 1 (Laplace Transform [5]). Let f be a function defined for t ≥ 0.
The Laplace transform of f is defined by the improper integral

L {f}(s) =
∫ ∞

0

e−stf(t) dt

provided that the integral converges.

The integral above is calculated by the usual method of improper integrals:

L {f}(s) =
∫ ∞

0

e−stf(t) dt = lim
b→∞

∫ b

0

e−stf(t) dt .

The Laplace transforms of some functions can be calculated from this definition.

Example. For s ∈ (0,∞),

L {1}(s) = lim
b→∞

∫ b

0

e−st · 1 dt = lim
b→∞

−e−st

s

∣∣∣∣b
0

= lim
b→∞

(
− e−sb

s
+

1

s

)
=

1

s
.

Example. For s ∈ (1,∞),

L {et}(s) = lim
b→∞

∫ b

0

e−stet dt = lim
b→∞

∫ b

0

e(1−s)t dt = lim
b→∞

e(1−s)t

1− s

∣∣∣∣b
0

= lim
b→∞

(
e(1−s)b

1− s
− 1

1− s

)
=

1

s− 1
.
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Example 2. The Laplace transforms of some basic functions are as follows, for suitable values
of s:

L {1}(s) = 1

s

L {tn}(s) = n!

sn+1

L {eat}(s) = 1

s− a

L {sin(kt)}(s) = k

s2 + k2

L {cos(kt)}(s) = s

s2 + k2
.

The inverse transform

As the Laplace transform exists, its inverse transform also exists. A specific formula for
the inverse transform does not exist; it can only be derived from the Laplace transform.

Definition 3 (Inverse Laplace transform [5]). If F (s) = L {f}(s), then

f(t) = L −1{F (s)}(t) .

is the inverse Laplace transform of F (s).

Example. By Example 2, L {tn}(s) = n!

sn+1
, so

L −1

{
n!

sn+1

}
(t) = tn .

Existence of the Laplace transform

Of course, the improper integral
∫∞
0

e−stf(t) dt might not exist. Then, when does the
Laplace transform exist? We will propose a theorem giving an existence condition.
First, we first define exponential order.

Definition 4 (Exponential order). A function f is of exponential order when constants a,
k > 0 and T > 0 exist such that

f(t) ≤ keat when t > T .

This means that f should be eventually smaller than an exponential function. For
example, f(t) = tn is of exponential order for any natural number n, but f(t) = et

2 is
not of exponential order.

The following theorem provides a sufficient condition for the existence of a Laplace
transform.
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Theorem 5. Suppose that f is piecewise continuous on [0,∞) and of exponential order. Then
the Laplace transform of f exists for s > 0.

Proof. We divide the interval [0,∞) into the sub-intervals [0, T ) and [T,∞):∫ ∞

0

e−stf(t) dt =

∫ T

0

e−stf(t) dt+

∫ ∞

T

e−stf(t) dt.

We see that
∫ T

0
e−stf(t) dt is finite. Since f is of exponential order, constants a, k, T > 0

exist so that
|f(t)| ≤ keat .

for all t > T . Therefore,∣∣∣∣ ∫ ∞

T

e−stf(t) dt

∣∣∣∣ ≤ ∫ ∞

T

|e−stf(t)| dt ≤ k

∫ ∞

0

e−st · eat dt = k
e−(s−a)T

s− a
< ∞ ,

for all s > a. 2

Some properties of the Laplace transform

Here are some properties that help evaluate Laplace transform of functions. [5]

Theorem 6 (Linearity of the Laplace transform).
If L {f1} and L {f2} exist for s > a1 and s > a2. Then, for s > max{a1, a2},

L {c1f1 + c2f2}(s) = c1L {f1(t)}(s) + c2L {f2(t)}(s) .

Theorem 7 (Linearity of the inverse transform). The inverse Laplace transform is a linear
transform. That is, for constants c1 and c2,

L −1{c1F (s) + c2G(s)}(t) = c1L
−1{F (s)}(t) + c2L

−1{G(s)}(t) .

Theorem 8 (Transform of derivatives). If f ′ is continuous on [0,∞) and f is of exponential
order, then

L {f ′(t)}(s) = sF (s)− f(0) .

If f, f ′, . . . , f (n−1) are continuous on [0,∞) and are of exponential order, and if f (n)(t) is piece-
wise continuous on [0,∞), then

L {f (n)(t)} = snF (s)− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0) .

3



3 Taylor series

Using the Taylor series is our main method of approximating Laplace transforms. To
know what the Taylor series is, one should start with power series.

Definition 9 (Power series [3]). A power series is a series of the form

∞∑
n=0

an(x− c)n = a0 + a1(x− c) + a2(x− c)2 + · · ·

where an represents the coefficient of the nth term and c is a constant.

Taylor series is a special case of power series, where the coefficients are determined
by a formula.

Definition 10 (Taylor series [4]). A Taylor series of a function f that is infinitely differ-
entiable at a real number a is the power series

∞∑
n=0

f (n)(a)

n!
(x− a)n = f(a) + f ′(a)(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · · ,

where f (n)(a) denotes the nth derivative of f evaluated at the point a. This polynomial
is called the Taylor polynomial of f .

Taylor’s Theorem

One might think: what is the significance of the Taylor series? Its importance arises
from the fact that it provides a good approximation of the original function. For exam-
ple in the figure below, the (red) graph of y = 1 + x + x2

2!
+ x3

3!
+ · · · looks almost the

same as the (blue) graph of y = ex, at least when x is close to 0:

−3 −2 −1 1 2
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The figure above shows the graph of y = ex and its Taylor approximation. The blue
curve represents y = ex, and the red curve represents y = 1 + x + x2

2!
+ x3

3!
, which is

a Taylor polynomial of ex of degree 3. Notice that the Taylor polynomial of degree 3
looks nearly the same with the graph of y = ex near 0. Increasing the degree of the
Taylor polynomial will increase its accuracy, providing a better approximation for the
original function. The figure below shows the Taylor approximation of ex with Taylor
polynomial of degree 7, which is much more accurate than the Taylor polynomial of
degree 3.
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Summing the Taylor series to infinity, some Taylor series become the function itself
that the Taylor series is derived from. One such example is

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

for all real x. However, not all functions are equal to their Taylor series. The condition
for a function to be equal to its Taylor series is stated in the Taylor’s theorem.

Theorem 11 (Taylor’s Theorem [2]). If f(x) = Tn(x) + Rn(x), where Tn is the nth-degree
Taylor polynomial of f at a and

lim
n→∞

Rn(x) = 0

for |x− a| < R, then f is equal to the sum of its Taylor series on the interval |x− a| < R.

In the theorem above, Rn(x) is the error, or remainder, between f(x) and Tn(x), and
R is the radius of convergence. The theorem states that in its interval of convergence,
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if the error bound keeps decreasing so that the limit of it is 0, then the function is equal
to its Taylor series.

The following theorem gives an upper bound on the size of the remainder Rn(x).

Theorem 12 (Taylor’s Inequality [2]). If |f (n+1)(x)| ≤ M whenever |x− a| ≤ d, then

|Rn(x)| ≤
M

(n+ 1)!
|x− a|n+1

whenever |x− a| ≤ d.

Example. Prove that ex is equal to its Taylor series at 0.

Since (ex)(k)(0) = 1 for all k, the Taylor series of ex at x = 0 is

ex =
∞∑
n=0

1

n!
xn = 1 + x+

x2

2!
+

x3

3!
+ · · · .

If d is any positive number and |x| ≤ d, then |f (n+1)(x)| = ex ≤ ed. Letting M = ed

therefore gives the inequality

|Rn(x)| ≤
ed

(n+ 1)!
|x|n+1

for all x satisfying |x| ≤ d. Using the lemma [2] that

lim
n→∞

xn

n!
= 0

for every real number x, we get

lim
n→∞

ed

(n+ 1)!
|x|n+1 = ed lim

n→∞

|x|n+1

(n+ 1)!
= 0 .

Thus, lim
n→∞

Rn(x) = 0 by the Squeeze Theorem, and so ex is equal to its Taylor series.

Instead of using improper integrals directly, Laplace transforms of some functions
can be calculated from the simple Laplace transform L {tn} = n!/sn+1, using Taylor
series:

Example. Since the Taylor series of et is et = 1 + t+ t2

2!
+ · · · ,

L {et}(s) = L

{
1 + t+

t2

2!
+ · · ·

}
(s) =

1

s
+

1

s2
+

1

s3
+ · · · =

∞∑
n=1

1

sn
=

1
s

1− 1
s

=
1

s− 1
.

Example. Since the Taylor series of sin t is sin t = t− t3

3!
+ t5

5!
− t7

7!
+ · · · ,

L {sin t}(s) = L

{
t − t3

3!
+

t5

5!
− t7

7!
+ · · ·

}
(s)

=
1

s2
− 1

s4
+

1

s6
− 1

s8
+ · · · =

∞∑
n=1

( 1

−s2

)n

=
−1
s2

1− −1
s2

=
1

s2 + 1
.
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Approximating functions with its Taylor series

Instead of summing the Taylor series up to infinity, summing only up to a finite degree
gives an approximation of the function which its Taylor series is derived from.

Definition 13 (Partial sum of Taylor series).
Define Tk(t) to be the kth partial sum of the Taylor series of f(t). That is,

Tk(t) =
k∑

i=0

f (i)(a)

i!
= f(a) + f ′(a)(t− a) +

f ′′(a)

2!
(t− a)2 + · · ·+ f (k)(a)

k!
(t− a)k .

When Rn(t) → 0 as n → ∞, Tn(t) → f(x) as n → ∞ because f(t) is equal to its
Taylor series. By Taylor’s inequality, the remainder term Rn(t) will get smaller as n
increases, and Rn(t) ≈ 0 near t = a when n is sufficiently large. Therefore, we can
approximate f(t) by partial sums of Taylor series, and f(t) ≈ Tn(t) near t = a when n
is sufficiently large.

4 Approximating Laplace transforms

Section 2 stated that Laplace transform is defined by an improper integral. Then, does
the Laplace transform exist for every function? The answer is no, since when the in-
tegral diverges, the Laplace transform does not exist. The Laplace transform of 1/t is
one such example. Also, there are functions that, even if they are of exponential order,
their Laplace transform cannot be expressed in terms of standard functions. For such
cases, Laplace transforms can still be approximated. The idea is to express the function
as its Taylor polynomial, and then apply the Laplace transform.

Theorem 14 (Laplace Remainder Theorem). Let f0, f1, f2, . . . be a sequence of functions.
If fn is of exponential order for all n and if limn→∞ fn = 0, then

lim
n→∞

L {fn}(s) = 0 .

Proof. Since fn is of exponential order for all n, there are constants a, k, T > 0 so that

fn(t) ≤ keat

when t > T . Then we have e−stfn(t) ≤ e−st · keat. Since
∫∞
0

e−st
∣∣keat∣∣ dt < ∞, the

Dominated Convergence Theorem [1] implies that

lim
n→∞

∫ ∞

0

fn(t) dt =

∫ ∞

0

lim
n→∞

fn(t) dt .

Therefore,

lim
n→∞

L {fn}(s) = lim
n→∞

∫ ∞

0

fn(t) dt =

∫ ∞

0

lim
n→∞

fn(t) dt = L {0}(s) = 0

which completes the proof. 2
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By Theorem 14, even though the Laplace transform shifts a function in t-domain to
a function in s-domain, the limit of the sequence of the Laplace transform is 0, so the
approximation is still valid in the s-domain.

Theorem 15 (Approximating Laplace transforms). If a function f is infinitely differen-
tiable at 0, then its Laplace transform can be approximated by

L {f}(s) ≈
k∑

n=0

f (n)(0)

sn+1
=

f(0)

s
+

f ′(0)

s2
+

f ′′(0)

s3
+ · · ·+ f (k)(0)

sk+1

when t is in the interval of convergence and k is finite.

Proof. Since fn is of exponential order because it is a polynomial, Rn = f −Tn is also of
exponential order. Since limn→∞Rn = 0, Theorem 14 implies that

lim
n→∞

L {Rn}(s) = 0 .

Therefore, we have

L {f}(s) ≈ L

{ k∑
n=0

f (n)(0)

n!
xn

}
(s) =

k∑
n=0

f (n)(0)

n!

n!

sn+1
=

k∑
n=0

f (n)(0)

sn+1
. □

Even if f(t) doesn’t have a Laplace transform, then one can approximate a Laplace
transform for f(t) by the theorem above because the Taylor polynomial of finite degree
derived from f(t) always has a Laplace transform. Also, since the Taylor polynomial of
f(t) behaves like f(t) near t = 0, we can approximate solutions of differential equations
with initial values at 0 using Laplace transforms. One example is stated to clarify the
usage of the theorem.

Example. Even though the Laplace transform of tan t cannot be expressed in terms of
standard functions, the theorem above can be used to approximate the Laplace trans-
form of tan t in its interval of convergence, which is (−π/2, π/2). The derivation of a
Taylor polynomial of degree 7 from tan t is as follows. Let f(t) = tan t. Since

f(0) = 0

f ′(0) = 1

f ′′(0) = 0

f ′′′(0) = 2

f (4)(0) = 0

f (5)(0) = 16

f (6)(0) = 0

f (7)(0) = 272 ,
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the Taylor polynomial of tan t of degree 7 is

tan t ≈ t+
1

3
t3 +

2

15
t5 +

17

315
t7 ,

which is drawn in the figure below.

−2 −1 1 2
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t

y

The red curve is the graph of y = tan t and the blue curve is the graph of the Taylor
polynomial of tan t of degree 7. Note that the Taylor polynomial behaves exactly like
tan t near t = 0.

Applying Laplace transforms on both sides gives

L {tan t}(s) ≈ L

{
t+

1

3
t3 +

2

15
t5 +

17

315
t7
}
(s) =

1

s2
+

2

s4
+

16

s6
+

272

s8
.

Therefore, the Laplace transform of tan t can be approximated as

L {tan t}(s) ≈ 1

s2
+

2

s4
+

16

s6
+

272

s8
. (1)

5 Solving differential equations

This approximation method can also be used to solve differential equations, especially
for approximating solutions near t = 0 in initial-value problems. Suppose there is
an initial-value problem involving f(t). Instead of solving the initial-value problem
with f(t) included, solve with its Taylor polynomial; this will be much easier because
the Laplace transform of the Taylor polynomial is simple. Also, since the Taylor poly-
nomial of f(t) behaves like f(t) near t = 0, the solution of the initial-value problem
evaluated from the Taylor polynomial of f(t) will behave like it evaluated from f(t).
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Example. Solve y′′ + y = tan t, y(0) = 0, y′(0) = 1.

This initial-value problem can be solved by the variation-of-parameter method, as
follows. Note that the coefficients of the derivatives of y are all constants. To find
the complementary solution, we solve the auxiliary equation m2 + 1 = 0, which gives
m = ±i. Therefore, the complementary solution is y = c1e

ix+c2e
−ix = c′1 cos t+c′2 sin t by

Euler’s Formula, where c1, c2, c′1, c′2 are constants, and the fundamental set of solutions
is {cos t, sin t}. To find the particular solution, let yp(t) = u1(t) cos t+ u2(t) sin t. Then

u′
1 =

W1

W
and u′

2 =
W2

W

where W , W1, and W2 are the determinants (called Wronskians)

W =

∣∣∣∣ cos t sin t
(cos t)′ (sin t)′

∣∣∣∣ , W1 =

∣∣∣∣ 0 sin t
tan t (sin t)′

∣∣∣∣ and W2 =

∣∣∣∣ cos t 0
(cos t)′ tan t

∣∣∣∣
by Cramer’s Rule. Therefore, we get

u′
1(t) = − sin t tan t = − sec t+ cos t and u′

2(t) = cos t tan t = sin t .

Integrating u′
1 and u′

2 gives

u1(t) = − ln(tan t+ sec t) + sin t and u2(t) = − cos t .

Thus, the particular solution is yp = − cos t ln(tan t + sec t). Since the general solution
is the sum of complementary solution and particular solution,

y(t) = c′1 cos t+ c′2 sin t− cos t ln(tan t+ sec t) .

The constants can be determined from the initial values y(0) = 0 and y′(0) = 1, giving

y(t) = 2 sin t− cos t ln(tan t+ sec t) .

Knowing the solution of these differential equation, we now approximate the solu-
tion of the differential equation.

Example. Solve y′′ + y = tan t, y(0) = 0, y′(0) = 1 by Laplace approximation.

Applying Laplace transforms to both sides, the left-hand side becomes

L {y′′+y}(s) = L {y′′}(s)+L {y}(s) = s2Y (s)−sy(0)−y′(0)+Y (s) = (s2+1)Y (s)−1 .

Recall from (1) above that the approximation of Laplace transform of tan t is

L {tan t}(s) ≈ 1

s2
+

2

s4
+

16

s6
+

272

s8
.

Therefore, we get the algebraic equation

(s2 + 1)Y (s)− 1 =
1

s2
+

2

s4
+

16

s6
+

272

s8
.
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To find the solution to the differential equation, one needs to solve for Y (s), and express
the solution as partial fractions. Solving for Y (s) gives

Y (s) = −257

s2
+

258

s4
− 256

s6
+

272

s8
+

258

s2 + 1
.

With the formula L −1{n!/sn+1} = tn, applying inverse Laplace transform to both sides
gives the solution to the differential equation, which is

y(t) =
17

315
t7 − 32

15
t5 + 43t3 − 257t+ 258 sin t .

The approximated solution is very similar to the actual solution.

−2 −1 1 2

−2

−1

1

2

t

y

In the figure above, the red curve is the graph of y(t) = 2 sin t− cos t ln(tan t+sec t),
and the green curve is the graph of y(t) = 17

315
t7 − 32

15
t5 + 43t3 − 257t+ 258 sin t. The two

curves are almost the same near t = 0.

6 Conclusion

In conclusion, Laplace transforms can be approximated and used to solve initial-value
problems. While certain functions may not have a direct expression in terms of stan-
dard functions, the ability to approximate Laplace transforms remains a powerful tool
in differential equations. Approximating solutions to differential equations, especially
near t = 0, is very useful in computational applications such as solving differential
equations for RC-circuits and pendulum oscillations.
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