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Malfatti’s problem for an equilateral triangle
Martina Škorpilová1

1 Introduction

Gian Francesco Malfatti (1731–1807) was an Italian mathematician (for more informa-
tion about him see [5]) who proposed the problem of carving out three cylindrical
columns of a marble right-triangular prism in 1803 [4]. The three columns as well as
the prism have the same altitude, and the material waste must be as small as possible.
Thus, the columns must have maximal sum of their volumes. If we focus on the trian-
gular base of the prism, then this problem can be transformed into the following plane
geometry problem: find three non-overlapping circles packed inside a given triangle
with maximal total area.

2 Two methods of solving

Malfatti assumed the best solution of this so-called Malfatti’s problem or Malfatti’s marble
problem is three circles which are tangent to each other and also to two sides of the
triangle. These circles are referred to as the Malfatti circles nowadays.

Later, mathematicians studied other ways of packing circles inside a triangle. One
of them is a greedy algorithm consisting of a series of three steps. In the first step, we
construct the circle of maximal radius (area) inside the triangle. It touches three sides
of triangle (i.e., it is the incircle of the triangle). In the second step, we draw the circle
of maximal radius which is inside the triangle and which does not overlap the first
circle. Finally, in the third step, we find the circle of maximal radius which is inside the
triangle and which overlaps neither the first nor second circle.

Let us look at both of these methods for representative triangles.

3 Isosceles triangles

In the case of the isosceles triangle which is shown in Figures 1 and 2 (the triangle with
a small angle at the apex against the base), the Malfatti circles (see Figure 1) cover only
approximately 35.7% of the area of the triangle. In the event of a greedy algorithm (see
Figure 2), it is approximately 54.5%. Thus, the greedy arrangement is better and the
difference is 18.8%.

1Martina Škorpilová is a Lecturer at the Faculty of Mathematics and Physics at Charles University in
Prague.
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Figure 2.

If we consider the isosceles triangle in Figures 3 and 4 (the triangle has the same
altitude as the triangle in the previous case and its base has twice the length), then the
Malfatti circles (see Figure 3) cover approximately 55.2% of the area of the triangle. In
the event of gradually packing circles of total maximum area inside the triangle (see
Figure 4), they cover approximately 69.9% of the area of the triangle. So, this time the
greedy algorithm is more optimal again but the difference, which is equal to 14.7%, is
smaller than in the previous case.
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Figure 4.

The question naturally arises as to how it will turn out in the case of an equilateral
triangle. Solving this problem with the help of analytical geometry, which can be done
by high school students, is the main content of this article.
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4 Equilateral triangles

Thus, consider an equilateral triangle ABC and let a = |BC| = |CA| = |AB| denote the
length of its sides.

Set up a Cartesian coordinate system with A at the origin and the positive direction
of the x-axis which coincides with the ray AB (see Figure 5). Then the vertices of the
triangle ABC have the following coordinates:

A = (0, 0) , B = (a, 0) and C =

(
a

2
,

√
3a

2

)
.

The area S△ of the triangle under consideration is

S△ =
a ·

√
3a
2

2
=

√
3a2

4
.
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Firstly, determine the areas of circles constructed by Malfatti (see Figure 5). Since
we are considering an equilateral triangle, all the Malfatti circles are congruent.

If we denote the foot of the perpendicular from C to the line AB by C1, then this
point has coordinates C1 = (a

2
, 0). Since the gravity center T of ABC divides the line

segment CC1 in ratio 2 : 1, the centre of gravity T has coordinates T = (a
2
,

√
3a
6
).

The Malfatti circle K1 with center O1 is the circle inscribed in the triangle AC1C.
Thus, O1 lies on the axes of the angles CAC1 = CAB and AC1C.

The direction vector A⃗T of the axis oA of the interior angle CAB of the triangle ABC

is A⃗T =
(
a
2
,

√
3a
6

)
. Therefore, the parametric equations of oA are

oA : x = a
2
t,

y =
√
3a
6
t, t ∈ R .

The direction vector ⃗C1O1 of the axis q of the angle AC1C is (−1; 1) and q passes through
the point C1 = (a

2
, 0). Thus, the parametric equations of q have the form

q : x = a
2
− s ,

y = s, s ∈ R .

We find the point O1 as the intersection point of oA and q:
a
2
t = a

2
− s ,√

3a
6
t = s .

We solve this system of linear equations using substitution:

a

2
t+

√
3a

6
t =

a

2
,

and thus 3at+
√
3at = 3a, giving

t =
3a

a
(
3 +

√
3
) .

We deduce that

t =
3

3 +
√
3
· 3−

√
3

3−
√
3
=

3−
√
3

2
.

Hence, the coordinates of O1 are
(

(3−
√
3)a

2·2 ,
√
3a(3−

√
3)

6·2

)
=

(
(3−

√
3)a

4
,
(
√
3−1)a
4

)
.

The radius r1 of the Malfatti circle K1 is equal to the y-coordinate of O1. Therefore,
r1 =

1
4

(√
3− 1

)
a and the total area of three Malfatti circles is

S = 3πr21 = 3π

((√
3− 1

)
a

4

)2

=
3π

(
3− 2

√
3 + 1

)
a2

16
=

3π
(
2−

√
3
)
a2

8
.

Let us now pay attention to the second case (i.e., to the greedy arrangement) in which
three circles of maximum area inside the triangle ABC are gradually inscribed (see
Figure 6).
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The center O′
1 of the circle K ′

1 with the maximum radius r′1 (K ′
1 is the incircle of

ABC) coincides with the centre of gravity of the equilateral triangle ABC. Therefore,
O′

1 =
(
a
2
,
√
3a
6

)
and it is obvious that r′1 =

√
3a
6

.
Thus, the area of K ′

1 is

S ′
K1

= πr′
2
1 = π

(√
3a

6

)2

=
πa2

12
.

Let us determine coordinates of the centre O′
2 of the area-maximizing circle K ′

2 which
is tangent to the circle K ′

1 and to two sides of triangle ABC (see Figure 6).
The point of contact P ′ where the circle K ′

1 touches the circle K ′
2 lies simultaneously

on the axis oA of the angle CAB and on the boundary k′
1 of the circle K ′

1, i.e., on the
circle with centre O′

1 =
(
a
2
,
√
3a
6

)
and radius r′1 =

√
3a
6

. Hence, the coordinates (xP ′ , yP ′)
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of P ′ satisfy simultaneously the equations of oA

oA : xP ′ = a
2
t ,

yP ′ =
√
3a
6
t, t ∈ R ,

and of circle k′
1 (

xP ′ − a

2

)2

+

(
yP ′ −

√
3a

6

)2

=

(√
3a

6

)2

.

After substituting, we obtain(
a

2
t− a

2

)2

+

(√
3a

6
t−

√
3a

6

)2

=

(√
3a

6

)2

,

and, after rearranging, we have

a2

4
(t− 1)2 +

a2

12
(t− 1)2 =

a2

12
.

Hence,
4 (t− 1)2 = 1 .

We deduce that
|t− 1| = 1

2
.

Hence, t1 = 1
2
, t2 = 3

2
. Since we need the intersection point of oA and k′

1 which has
smaller x-coordinate of the two options, we will consider only the solution t1 =

1
2
. So,

xP ′ = a
2
· 1
2
= a

4
and yP ′ =

√
3a
6

· 1
2
=

√
3a
12

. Therefore, P ′ =
(
a
4
,
√
3a
12

)
.

The point O′
2

[
xO′

2
; yO′

2

]
is the same distance from the point P ′ and from the line AB

(thus, O′
2 lies on the parabola with focus P ′ and directrix AB). Since this distance is its

y-coordinate yO′
2
, we have√(

xO′
2
− a

4

)2

+

(
yO′

2
−

√
3a

12

)2

= yO′
2
.

After squaring, we obtain

x2
O′

2
−

xO′
2
· a

2
+

a2

16
+ y2O′

2
−

yO′
2
·
√
3a

6
+

3a2

144
= y2O′

2
,

and, consequently,

x2
O′

2
−

xO′
2
· a

2
+

a2

16
−

yO′
2
·
√
3a

6
+

3a2

144
= 0.

The point O′
2 lies also on oA, which implies

oA : xO′
2

= a
2
t,

yO′
2

=
√
3
6
at, t ∈ R.
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It follows that (a
2
t
)2

−
a
2
t · a
2

+
a2

16
−

√
3
6
at ·

√
3a

6
+

3a2

144
= 0 ;

that is,
a2t2

4
− a2t

4
+

a2

16
− a2t

12
+

a2

48
= 0 .

This gives
a2

(
3t2 − 4t+ 1

)
= 0 .

Since a > 0, we have
3t2 − 4t+ 1 = 0 ,

which has the following two solutions:

t1,2 =
4± 2

6
; i.e. , t1 =

1

3
, t2 = 1 .

From these two options, we will choose the one for which the coordinate xO′
2

is smaller
(O′

2 lies on the mentioned parabola to the left of its focus P ′). So, we consider only
the solution t1 = 1

3
, which gives us xO′

2
= a

2
· 1

3
= a

6
, yO′

2
=

√
3a
6

· 1
3
=

√
3a
18

. Hence,
O′

2 =
(
a
6
,
√
3a
18

)
.

The radius r′2 of K ′
2 is equal to y-coordinate of O′

2, which implies r′2 =
√
3a
18

. Thus,
the area SK′

2
of K ′

2 is

SK′
2
= πr′22 = π

(√
3a

18

)2

=
πa2

108
.

The third inscribed circle K ′
3 is congruent to K ′

2 (see Figure 6). Thus, the sum S ′ of areas
of the circles K ′

1, K ′
2 and K ′

3 is

S ′ = SK′
1
+ 2 · SK′

2
=

πa2

12
+ 2 · πa

2

108
=

11πa2

108
.

Now, we can determine in which of the two cases the area of ABC covered by the
three circles is larger.

In the first case (the Malfatti circles), the ratio of the area S of three circles to the
area S△ of ABC is

S

S△
=

3π(2−
√
3)a2

8√
3a2

4

=
3π

(
2−

√
3
)

8
· 4√

3
=

3π
(
2−

√
3
)

2
√
3

≈ 0.729 .

In the second case (the greedy arrangement), the ratio is

S ′

S△
=

11πa2

108√
3a2

4

=
11π

108
· 4√

3
=

11π

27
√
3
≈ 0.739 .
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In the first case, three circles cover approximately 72.9% of the area of the triangle. In
the second case, it is approximately 73.9%, i.e. approximately one percent more. So
even for an equilateral triangle, Malfatti’s solution is not better.

The advantage of the greedy algorithm for the equilateral triangle was pointed out
by H. Lob and H.W. Richmond in 1930 [3]. Moreover, Michael Goldberg showed in
1967 [2] that the greedy algorithm is always more optimal than the procedure pre-
sented by Malfatti. In 1994, Zalgaller and Los proved that the greedy arrangement is
always the best solution of Malfatti’s problem [6]. For more information about history
of problem, see [1].
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