
Parabola Volume 59, Issue 3 (2023)

Flow-shop scheduling with max-plus algebra
Ricky Wijaya1, Jonathan Hoseana2, and Iwan Sugiarto3

1 Introduction

Consider a project, call it Project A, consisting of three jobs: Job 1, Job 2 and Job 3, each
of which must be processed at two machines: Machine 1 and Machine 2. Job 1 must
be processed at Machine 1 for 3 minutes, before being processed at Machine 2 for 2
minutes. Job 2 must be processed at Machine 1 for 3 minutes, before being processed
at Machine 2 for 3 minutes. Job 3 must be processed at Machine 1 for 1 minute, before
being processed at Machine 2 for 4 minutes. See Table 1. Assume that each machine
can only process a single job at a time, but simultaneous processings of different jobs
at different machines are possible. If the three jobs have to be processed in order, then
what is the total time required to finish the project?

Machine Job 1 Job 2 Job 3

Machine 1 3 3 1

Machine 2 2 3 4

Table 1: The processing duration, in minutes, of each job at each machine for Project A.

To answer this question, one could construct a time diagram, as in Figure 1, which
shows the job being processed at each machine at any given time t (in minutes). The
symbols M1 and M2 represent Machine 1 and Machine 2, respectively, while the sym-
bols J1, J2, and J3 represent Job 1, Job 2, and Job 3, respectively. We can see that the
last process in the project (i.e., the processing of Job 3 at Machine 2) finishes at t = 13.
Therefore, the total time required to finish the project is 13 minutes.

Next, what if the three jobs do not have to be processed in order? Can we find an
order in which these jobs can be processed such that the project finishes in shorter time?

Since this project consists only of three jobs, there are only 3! = 6 possible orders, al-
lowing exhaustive checking. The first possible order – 1, 2, 3 – is considered in Figure 1
and gives a total time of 13 minutes. The other five possible orders are

1, 3, 2 , 2, 1, 3 , 2, 3, 1 , 3, 1, 2 , and 3, 2, 1 . (1)
1Ricky Wijaya is an undergraduate student at the Department of Mathematics, Parahyangan Catholic

University, Bandung, Indonesia. (rickywijaya2311@gmail.com)
2Jonathan Hoseana is the Head of the Centre for Mathematics and Society, Department of Mathemat-

ics, Parahyangan Catholic University, Bandung, Indonesia. (j.hoseana@unpar.ac.id)
3Iwan Sugiarto is a researcher at the Centre for Mathematics and Society, Department of Mathemat-

ics, Parahyangan Catholic University, Bandung, Indonesia. (iwans@unpar.ac.id)

1



t
2 4 6 8 10 12

J1

J1

J2

J2

J3

J3

M1

M2

Figure 1: A time diagram for Project A, showing the job being processed at each ma-
chine at any given time t, in the case of the three jobs being processed in order.

Time diagrams corresponding to these orders are presented in Figure 2. From the di-
agrams, we can see that these orders give total times of 12 minutes, 12 minutes, 12
minutes, 10 minutes, and 10 minutes, respectively. Thus, to finish the project in the
shortest possible time, the three jobs must be processed in the order

3, 1, 2 or 3, 2, 1.

Using either of these orders, the project finishes in only 10 minutes.
A natural question now arises. For a project consisting of n jobs to be processed at m

machines, is there a way to determine an order in which the jobs should be processed
such that the project finishes in the shortest possible time, without exhaustive check-
ing? This is the so-called flow-shop scheduling problem. The term flow-shop entails
the condition that each job is processed at the machines in the same order, indicated by
the numbers by which the machines are labelled [2, Sec. 3.3]. Without this condition,
the problem is referred to as the job-shop scheduling problem [2, Sec. 3.3]. An order of
jobs minimising the project’s finish time is referred to as an optimal order.

In this article, we discuss methods to solve the flow-shop scheduling problem,
which involve modelling the problem using matrices over the max-plus algebra. We
intend to provide not a new method but an exposition of methods already existing
in the literature, applying them in a number of illustrative examples. First, we shall
deal with two-machine projects, discussing the so-called JG algorithm of Bouquard, et
al. [1, Sec. 3], a generalised version of an algorithm of Johnson [6], which can be used
to find an optimal scheduling of all two-machine projects (Sections 2–4). The basic idea
is to represent each job as a matrix, naturally called a job matrix, so that the problem
of finding an optimal job order becomes that of finding an order in which these job
matrices should be multiplied to obtain a result which is minimum with respect to a
certain order. Through a computer experiment, we compare the efficiency of the JG
algorithm to that of exhaustive checking (Section 4). Subsequently, we deal with the
multi-machine case, discussing methods which reduce certain multi-machine projects
into two-machine projects [2, 8], which can then be scheduled using the JG algorithm
(Section 5). To finish, we provide a brief remark and suggest further readings on gen-
eral algorithms applicable to the multi-machine case.

2



t
2 4 6 8 10 12

J1

J1

J3

J3

J2

J2

M1

M2

t
2 4 6 8 10 12

J2

J2

J1

J1

J3

J3

M1

M2

t
2 4 6 8 10 12

J2

J2

J3

J3

J1

J1

M1

M2

t
2 4 6 8 10 12

J3

J3

J1

J1

J2

J2

M1

M2

t
2 4 6 8 10 12

J3

J3

J2

J2

J1

J1

M1

M2

Figure 2: Time diagrams for Project A, showing the job being processed at each ma-
chine at any given time t, using the job orders given by (1).

3



2 The two-machine case

Consider a project consisting of n jobs, Job 1, . . . , Job n, which must be processed at two
machines: Machine 1 and Machine 2. Each job must be processed at Machine 1 before
being processed at Machine 2. For every i ∈ {1, . . . , n} and j ∈ {1, 2}, let pi,j be the
processing duration of Job i at Machine j. We aim to establish an optimal processing
order of these n jobs.

An order of these n jobs can be represented as a permutation of the set {1, . . . , n},
that is, a function σ : {1, . . . , n} → {1, . . . , n} which is bijective; that is, both one-to-one
and onto [3, p. 41]. Let us agree that σ is such that for every i ∈ {1, . . . , n}, the i-th job
to be processed is Job σ(i). If σ represents an optimal processing order, then we shall
refer to σ as an optimal permutation.

Suppose that the process begins at time t = 0. For each i ∈ {1, . . . , n} and j ∈ {1, 2},
let t = Fj(i) be the finish time of the i-th job to be processed, Job σ(i), at Machine j.
Thus, the entire project finishes at t = F2(n). Our goal, therefore, is to minimise F2(n).

Since the processing of the i-th job at Machine 1 can only begin once the processing
of the (i− 1)-th job at Machine 1 has finished, we have

F1(i) = pσ(i),1 + F1(i− 1) .

Moreover, since the processing of the i-th job at Machine 2 can only begin once both
the processing of the i-th job at Machine 1 and the processing of the (i − 1)-th job at
Machine 2 has finished, we have that

F2(i) = pσ(i),2 +max {F1(i), F2(i− 1)}
= max

{
pσ(i),2 + F1(i), pσ(i),2 + F2(i− 1)

}
= max

{
pσ(i),2 +

(
pσ(i),1 + F1(i− 1)

)
, pσ(i),2 + F2(i− 1)

}
.

Therefore, we obtain the system of recursions{
F1(i) = pσ(i),1 + F1(i− 1) ,

F2(i) = max
{(

pσ(i),2 + pσ(i),1
)
+ F1(i− 1), pσ(i),2 + F2(i− 1)

}
,

(2)

for which we define the initial values

F1(0) = F2(0) = 0 . (3)

Note that the right-hand sides of the recursions in (2) involves exactly two operations:
maximum and addition. The idea of max-plus algebra is to resymbolise these oper-
ations, conventionally as ⊕ and ⊗, so that the system of equations (2) can be written
in a tidier form, which subsequently allows us to obtain the desired scheduling via
matrix-based techniques.

4



3 The max-plus algebra

Let ε := −∞ and e := 0. The max-plus algebra is the set Rmax := R∪{ε} equipped with
the addition ⊕ and multiplication ⊗ defined by

x⊕ y := max{x, y}
and x⊗ y := x+ y

for every x, y ∈ Rmax [5, p. 13]. The adjoined element ε is intended to satisfy

x⊕ ε = ε⊕ x = x and x⊗ ε = ε⊗ x = ε

for every x ∈ Rmax, the former making ε the identity for the operation ⊕.
One verifies that the addition ⊕ is associative, commutative, and has an identity:

P1 for all x, y, z ∈ Rmax, we have (x⊕ y)⊕ z = x⊕ (y ⊕ z);

P2 for all x, y ∈ Rmax, we have x⊕ y = y ⊕ x;

P3 there exists ε ∈ Rmax such that, for each x ∈ Rmax, we have x⊕ ε = ε⊕ x = x;

that the multiplication ⊗ is associative:

P4 for all x, y, z ∈ Rmax, we have (x⊗ y)⊗ z = x⊗ (y ⊗ z);

and that the multiplication ⊗ is two-sided distributive over the addition ⊕:

P5 for all x, y, z ∈ Rmax, x⊗(y⊕z) = (x⊗y)⊕(x⊗z) and (y⊕z)⊗x = (y⊗x)⊕(z⊗x).

Thus, the max-plus algebra satisfies all axioms of a ring except the existence of inverses
with respect to ⊕. For this reason, the max-plus algebra is said to be a semiring [5,
p. 15]. In fact, the max-plus algebra is a commutative unital semiring, i.e., a semiring
in which the multiplication ⊗ is commutative and has an identity:

P6 for all x, y ∈ Rmax, we have x⊗ y = y ⊗ x;

P7 there exists e ∈ Rmax such that, for every x ∈ Rmax, we have x⊗ e = e⊗ x = x.

The associativity of both ⊕ and ⊗ implies that there is no ambiguity in the expressions
x⊕ y ⊕ z and x⊗ y ⊗ z.

The algebra of matrices over the max-plus algebra is developed via natural defini-
tions [5, p. 17–20]. We denote by R2×2

max the set of all 2× 2 matrices whose entries belong
to Rmax. For every A =

(
ai,j

)
2×2

and B =
(
bi,j

)
2×2

in R2×2
max, we define

A⊕B :=
(
ai,j ⊕ bi,j

)
2×2

and A⊗B :=
(
ci,j

)
2×2

,

where
ci,j := (ai,1 ⊗ b1,j)⊕ (ai,2 ⊗ b2,j)⊕ · · · ⊕ (ai,m ⊗ bm,j) .

5



Thus, for the matrices

A =

(
5 −2
10 e

)
and B =

(
e ε
1 −8

)
(4)

we have

A⊗B =

(
(5⊗ e)⊕ ((−2)⊗ 1) (5⊗ ε)⊕ ((−2)⊗ (−8))
(10⊗ e)⊕ (e⊗ 1) (10⊗ ε)⊕ (e⊗ (−8))

)
=

(
5⊕ (−1) ε⊕ (−10)
10⊕ 1 ε⊕ (−8)

)
=

(
5 −10
10 −8

)
and

B ⊗ A =

(
(e⊗ 5)⊕ (ε⊗ 10) (e⊗ (−2))⊕ (ε⊗ e)

(1× 5)⊕ ((−8)⊗ 10) (1⊗ (−2))⊕ ((−8)⊗ e)

)
=

(
5⊕ ε (−2)⊕ ε

6⊕ (−2) (−1)⊕ (−8)

)
=

(
5 −2
4 −9

)
,

which shows that multiplication in R2×2
max is not commutative. However, it is straight-

forward to show that

P8 for all A,B,C ∈ R2×2
max, we have (A⊕B)⊕ C = A⊕ (B ⊕ C);

P9 for all A,B,C ∈ R2×2
max, we have (A⊗B)⊗ C = A⊗ (B ⊗ C);

P10 for all A,B,C ∈ R2×2
max, we have

A⊗ (B ⊕ C) = (A⊗B)⊕ (A⊗ C) and (A⊕B)⊗ C = (A⊗ C)⊕ (B ⊗ C),

where P8 and P9 imply that the expressions A⊕B⊕C and A⊗B⊗C are unambiguous
[5, p. 19].

Next, let T2×2 ⊆ R2×2
max be the subset containing the 2 × 2 lower-triangular matrices,

i.e., those whose (1, 2)-entry is ε [5, p. 20]. Thus, for the matrices A and B in (4) we
have A /∈ T2×2 but B ∈ T2×2. The set T2×2 is closed under matrix multiplication:

P11 for all A,B ∈ T2×2, we have A⊗B ∈ T2×2.

Following [1, Sec. 3], for each A =
(
ai,j

)
2×2

and B =
(
bi,j

)
2×2

in T2×2, let us define the
sentence A ⩽ B to mean

a1,1 ⩽ b1,1 , a2,1 ⩽ b2,1 and a2,2 ⩽ b2,2 ,

and the sentence A < B to mean the same with < replacing ⩽ . It is not difficult to
show that

P12 for all A,B,C ∈ T2×2, if A ⩽ B, then A⊗ C ⩽ B ⊗ C and C ⊗ A ⩽ C ⊗B,
and if A < B, then A⊗ C < B ⊗ C and C ⊗ A < C ⊗B.

Finally, for all A,B ∈ T2×2, we define the sentence A P B to mean

A⊗B ⩽ B ⊗ A

and the sentence A◁B to mean the same with < replacing ⩽ [1, Sec. 3]. It is not difficult
to show that

P13 for all A,B ∈ T2×2, we have either A ◁ B or B P A.

6



4 Solving the two-machine case

The resymbolisation of maximum and addition as ⊕ and ⊗ allows us to rewrite the
two-machine flow-shop system (2) in the tidier form{

F1(i) = pσ(i),1 ⊗ F1(i− 1) ,

F2(i) =
[(
pσ(i),2 ⊗ pσ(i),1

)
⊗ F1(i− 1)

]
⊕
[
pσ(i),2 ⊗ F2(i− 1)

]
,

and subsequently in the matricial form(
F1(i)
F2(i)

)
=

(
pσ(i),1 ε

pσ(i),2 ⊗ pσ(i),1 pσ(i),2

)
⊗
(
F1(i− 1)
F2(i− 1)

)
= J(σ(i))⊗

(
F1(i− 1)
F2(i− 1)

)
, (5)

where

J(σ(i)) :=

(
pσ(i),1 ε

pσ(i),2 ⊗ pσ(i),1 pσ(i),2

)
∈ T2×2

is referred to the i-th job matrix [1, Sec. 3]. Since (5) holds for every i ∈ {1, . . . , n}, we
have (

F1(n)
F2(n)

)
= J(σ(n))⊗

(
F1(n− 1)
F2(n− 1)

)
= J(σ(n))⊗ J(σ(n− 1))⊗

(
F1(n− 2)
F2(n− 2)

)
= · · ·

= J(σ(n))⊗ J(σ(n− 1))⊗ · · · ⊗ J(σ(1))⊗
(
F1(0)
F2(0)

)
, (6)

where F1(0) = F2(0) = e by (3). An optimal permutation σ : {1, . . . , n} → {1, . . . , n} is
thus that for which the entries of the matrix

J(σ) := J(σ(n))⊗ J(σ(n− 1))⊗ · · · ⊗ J(σ(1)) ∈ T2×2

are as small as possible, i.e., that for which

J(σ) ⩽ J(τ) (7)

for every permutation τ : {1, . . . , n} → {1, . . . , n}.
Now, for an optimal permutation σ : {1, . . . , n} → {1, . . . , n}, suppose for a contra-

diction that there exists i ∈ {1, . . . , n − 1} such that J(σ(i)) ◁ J(σ(i + 1)). This means
that

J(σ(i))⊗ J(σ(i+ 1)) < J(σ(i+ 1))⊗ J(σ(i)) .

Defining a permutation τ : {1, . . . , n} → {1, . . . , n} by

τ(ℓ) =


σ(ℓ), if ℓ /∈ {i, i+ 1};
σ(i+ 1), if ℓ = i;

σ(i), if ℓ = i+ 1

7



for every ℓ ∈ {1, . . . , n}, we have, by P12, that

J(τ) = J(σ(n))⊗ · · · ⊗ J(σ(i))⊗ J(σ(i+ 1))⊗ · · · ⊗ J(σ(1))

< J(σ(n))⊗ · · · ⊗ J(σ(i+ 1))⊗ J(σ(i))⊗ · · · ⊗ J(σ(1)) = J(σ),

contradicting (7). This proves that if σ : {1, . . . , n} → {1, . . . , n} is an optimal permuta-
tion, then for every i ∈ {1, . . . , n− 1} we have J(σ(i+ 1)) P J(σ(i)). As a consequence,
if σ : {1, . . . , n} → {1, . . . , n} is an optimal permutation, then for every i, j ∈ {1, . . . , n}
with j > i, we have J(σ(j)) P J(σ(i)).

Conversely, suppose a permutation σ : {1, . . . , n} → {1, . . . , n} is such that for every
i, j ∈ {1, . . . , n} with j > i we have J(σ(j)) P J(σ(i)). Let us show that σ is an optimal
permutation. Let τ1 : {1, . . . , n} → {1, . . . , n} be an optimal permutation.

(a) If τ1 = σ, then we are done.

(b) If τ1 ̸= σ, then there exist two consecutive terms of the sequence (τ1(n), . . . , τ1(1)),
say τ1(k + 1) and τ1(k), such that τ1(k) precedes τ1(k + 1) in the sequence
(σ(n), . . . , σ(1)). That is, there exists k ∈ {1, . . . , n− 1} such that

τ1(k) = σ(j) and τ1(k + 1) = σ(i)

for some i, j ∈ {1, . . . , n} with j > i. By the assumed property of σ, this implies
that J (τ1(k)) P J (τ1(k + 1)), i.e.,

J (τ1(k))⊗ J (τ1(k + 1)) ⩽ J (τ1(k + 1))⊗ J (τ1(k)) .

Defining a permutation τ2 : {1, . . . , n} → {1, . . . , n} by

τ2(ℓ) =


τ1(ℓ), if ℓ /∈ {k, k + 1};
τ1(k + 1), if ℓ = k;

τ1(k), if ℓ = k + 1

for every ℓ ∈ {1, . . . , n}, we have, by P12, that

J (τ1) = J (τ1(n))⊗ · · · ⊗ J (τ1(k + 1))⊗ J (τ1(k))⊗ · · · ⊗ J (τ1(1))

⩾ J (τ1(n))⊗ · · · ⊗ J (τ1(k))⊗ J (τ1(k + 1))⊗ · · · ⊗ J (τ1(1)) = J (τ2) .

Repeating the above with τ2 replacing τ1 gives a permutation τ3 with J (τ2) ⩾ J (τ3).
Repeating again and continuing, one obtains a sequence (τ1, τ2, . . .) of permutations
for which there exist t ∈ N such that τt = σ, and hence

J (τ1) ⩾ · · · ⩾ J (τt) = J(σ) ,

implying that σ is an optimal permutation. We have therefore proved the following
proposition, which is a biconditional version of [1, Lemma 2].

8



Proposition 1. [1, Lemma 2]
A permutation σ : {1, . . . , n} → {1, . . . , n} is optimal if and only if for every i, j ∈ {1, . . . , n}
with j > i we have J(σ(j)) P J(σ(i)).

It is possible to show that a permutation σ with the property stated in Proposition 1
always exists and can be constructed using the so-called JG algorithm [1, Lemma 1].

Proposition 2 (The JG algorithm). [1, Lemma 1]
Let σ : {1, . . . , n} → {1, . . . , n} be a permutation defined as follows.

1. Let U := {i ∈ {1, . . . , n} : pi,1 ⩽ pi,2}.

2. Let V := {i ∈ {1, . . . , n} : pi,1 > pi,2}.

3. Let US be the sequence obtained by sorting the elements i ∈ U by non-decreasing pi,1,
and for elements i having the same pi,1, by non-increasing pi,2.

4. Let VS be the sequence obtained by sorting the elements i ∈ V by non-increasing pi,2, and
for elements i having the same pi,1, by non-decreasing pi,1.

5. The concatenation of US and VS is the sequence (σ(i))ni=1.

Then, for every i, j ∈ {1, . . . , n} with j > i we have J(σ(j)) P J(σ(i)).

Remark 3. The concatenation of two finite sequences (a1, . . . , ak) and (b1, . . . , bℓ) is the se-
quence (a1, . . . , ak, b1, . . . , bℓ) [7, p. 135].

For example, let us apply the JG algorithm to our Project A in Section 1, for which
the processing durations are given in Table 1. Using the pi,j-notation to denote these
durations, we obtain Table 2. Since

p1,1 > p1,2 , p2,1 ⩽ p2,2 and p3,1 ⩽ p3,2 ,

we have
U = {2, 3} and V = {1} .

Ordering the elements of these sets as guided by the algorithm, we obtain the se-
quences

US = (3, 2) and VS = (1) .

Concatenating these sequences gives (3, 2, 1). Therefore, the permutation σ : {1, 2, 3} →
{1, 2, 3} given by

σ(1) = 3, σ(2) = 2 and σ(3) = 1

is an optimal permutation. According to this permutation, the first, second, and third
jobs to be processed are, respectively, Job 3, Job 2, and Job 1. In order words, the JG
algorithm gives the last possible order in the list (1), which was indeed found to be
optimal via exhaustive checking.

9



Machine Job 1 Job 2 Job 3

Machine 1 p1,1 = 3 p2,1 = 3 p3,1 = 1

Machine 2 p1,2 = 2 p2,2 = 3 p3,2 = 4

Table 2: The processing duration pi,j , in minutes, of Job i at Machine j for Project A.

Machine Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8 Job 9 Job 10

Machine 1 2 7 22 4 14 1 19 19 12 18
Machine 2 5 9 10 20 2 10 13 8 29 14

Table 3: The processing duration, in minutes, of Job i at Machine j, used in our com-
puter experiment.

Finally, the total time required to finish the project using the job order given by σ
can be computed, either by constructing the associated time diagram (the last one in
Figure 2), or by writing down the job matrices

J(σ(1)) = J(3) =

(
1 ε
5 4

)
,

J(σ(2)) = J(2) =

(
3 ε
6 3

)
,

J(σ(3)) = J(1) =

(
3 ε
5 2

)
and substituting these into (6) to obtain(

F1(3)
F2(3)

)
= J(σ(3))⊗ J(σ(2))⊗ J(σ(1))⊗

(
F1(0)
F2(0)

)
=

(
3 ε
5 2

)
⊗

(
3 ε
6 3

)
⊗
(

1 ε
5 4

)
⊗
(
e
e

)
=

(
7
10

)
.

Therefore, using the job order given by σ, the project finishes in F2(3) = 10 minutes.
To observe the efficiency of the JG algorithm, we carried out a computer exper-

iment4 to compare the running times of the JG algorithm and an algorithm imple-
menting exhaustive check, using the processing durations presented in Table 3, each
of which is chosen at random from the set {1, . . . , 30}.

For each N ∈ {1, . . . , 10}, we ran each of the two algorithms five times to schedule
the two-machine flow-shop project involving the jobs J1, . . . , JN in Table 3, recording
the average running times (in seconds) as tN,2 and TN,2, for the JG and exhaustive check
algorithms, respectively. These average running times are plotted in Figure 3. We can

4This experiment was carried out using ASUS ROG Strix 5 GL503GE with Intel Core i7-8750H pro-
cessor and 8 GB RAM.

10



1 2 3 4 5 6 7 8 9 10

200

400

600

800

1,000

1,200

1,400

N

t N
,2

,
T
N
,2

1 2 3 4 5 6 7 8 9 10

−5

0

5

N

ln
t N

,2
,
ln
T
N
,2

Figure 3: A plot of tN,2 (red) and TN,2 (blue) as functions of N (left), and a plot of ln tN,2

(red) dan lnTN,2 (blue) as functions of N (right).

Machine Job 1 Job 2 Job 3

Machine 1 5 3 4

Machine 2 1 4 2

Machine 3 4 4 5

Table 4: The processing duration, in minutes, of each job at each machine for Project B.

see that the exhaustive-check algorithm is faster than the JG algorithm only in the cases
where there are only very few jobs: N ∈ {1, 2, 3}. As the number of jobs N increases,
the JG algorithm becomes significantly faster.

5 The multi-machine case

Let us now say a few words on the three-machine case, and subsequently on the gen-
eral m-machine case. Consider a flow-shop project, call it Project B, with three jobs,
Job 1, Job 2 and Job 3, each of which are to be processed at three machines, Machine 1,
Machine 2 and Machine 3, where the processing times are given in Table 4. The time
diagram in Figure 4 shows that processing these three jobs in order requires a total
time of 21 minutes.

If the jobs do not have to be processed in order, we can certainly perform ex-
haustive checking, to obtain that an optimal job order is 3, 2, 1, which gives a total
time of 19 minutes. However, we can also try implementing a classic mathematical
problem-solving strategy: reducing the problem into one which we already know how
to solve [9, p. 149–150]. Specifically, we try reduce the three-machine project in Table 4
into a two-machine project, by defining a new Machine 1′ as the composition of Ma-

11



t
2 4 6 8 10 12 14 16 18 20

J1

J1

J1

J2

J2

J2

J3

J3

J3

M1

M2

M3

Figure 4: A time diagram for Project B, showing the job being processed at each ma-
chine at any given time t, in the case of the three jobs being processed in order.

t
2 4 6 8 10 12 14 16 18 20

J3

J3

J3

J2

J2

J2

J1

J1

J1

M1

M2

M3

Figure 5: A time diagram for Project B, showing the job being processed at each ma-
chine at any given time t, using the job order 3, 2, 1.

chine 1 and Machine 2, and a new Machine 2′ as the composition of Machine 2 and
Machine 3. At each composite machine, we define the processing duration of each job
to be the product5 of the job’s processing durations at the composed machines. This
reduces the three-machine project in Table 4 into the two-machine project in Table 5.
Applying the JG algorithm to this two-machine project gives the optimal job order
mentioned above: 3, 2, 1. The corresponding total time then can be determined by
constructing the associated time diagram (Figure 5), i.e., 19 minutes.6

Machine Job 1 Job 2 Job 3

Machine 1′

(Composition of Machines 1 and 2)
5⊗ 1 = 6 3⊗ 4 = 7 4⊗ 2 = 6

Machine 2′

(Composition of Machines 2 and 3)
1⊗ 4 = 5 4⊗ 4 = 8 2⊗ 5 = 7

Table 5: The processing duration, in minutes, of each job at each composite machine
for Project B.

5With respect to the operation ⊗, i.e., the sum.
6It is also possible to determine the total time using job matrices as in the two-machine case. In the

three-machine case, the job matrices are of size 3× 3 [1, Subsec. 4.5].

12



Machine Job 1 Job 2 Job 3

Machine 1 3 3 4

Machine 2 5 2 4

Machine 3 5 4 5

Table 6: The processing duration, in minutes, of each job at each machine for Project C.

Machine Job 1 Job 2 Job 3

Machine 1′

(Composition of Machines 1 and 2)
3⊗ 5 = 8 3⊗ 2 = 5 4⊗ 4 = 8

Machine 2′

(Composition of Machines 2 and 3)
5⊗ 5 = 10 2⊗ 4 = 6 4⊗ 5 = 9

Table 7: The processing duration, in minutes, of each job at each composite machine
for Project C.

Is this reduction method successful for all three-machine projects? To answer this,
consider another three-machine project, call it Project C, given by Table 6. Let us im-
plement the same idea, namely, defining a new Machine 1′ as the composition of Ma-
chine 1 and Machine 2, and a new Machine 2′ as the composition of Machine 2 and
Machine 3. This gives the two-machine project in Table 7. Applying the JG algorithm
to this project gives the job order 2, 1, 3, with a total time of 20 minutes. However,
by exhaustive checking, one finds that the order 1, 2, 3 gives a shorter total time of 19
minutes.

Therefore, the reduction method is not always successful. Under what conditions is
it guaranteed to be successful? A sufficient condition is given by the following propo-
sition [2, Theorem 1 in sec. 8.3].

Proposition 4. [2, Theorem 1 in Sec. 8.3]
Consider a three-machine flow-shop project, with pi,j denoting the processing duration of Job i
at Machine j, for every i ∈ {1, . . . , n} and j ∈ {1, 2, 3}. If either

min {p1,1, . . . , pn,1} ⩾ max {p1,2, . . . , pn,2} (8)
or min {p1,3, . . . , pn,3} ⩾ max {p1,2, . . . , pn,2} , (9)

then the JG algorithm applied to the flow-shop project consisting of the two composite machines

Machine 1′, defined as the composition of Machine 1 and Machine 2, and

Machine 2′, defined as the composition of Machine 2 and Machine 3 ,

where, at each composite machine, the processing duration of each job is defined to be the prod-
uct of the job’s processing durations at the composed machines, produces a job order which is
optimal for the original three-machine project.

13



Notice that the condition (8) means that every processing duration in Machine 1
must be longer than every processing duration in Machine 2, while the condition (9)
means that every processing duration in Machine 3 must be longer than every process-
ing duration in Machine 2. Notice also that Project B (Table 4) satisfies (9), whereas
Project C (Table 6) satisfies neither (8) nor (9).

Conveniently, Proposition 4 is generalisable to the m-machine case, for all m ⩾ 3,
providing a sufficient condition for which an m-machine project can be scheduled by
reduction to a two-machine project involving Machine 1′, defined as the composition
of Machine 1, . . . , Machine m − 1, and Machine 2′, defined as the composition of Ma-
chine 2, . . . , Machine m [8, Sec. 10.3].

Proposition 5. [8, Sec. 10.3]
Consider an m-machine flow-shop project, with pi,j denoting the processing duration of Job i at
Machine j, for every i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. If either

min { p1,1 , . . . , pn,1 } ⩾ max {p1,k, . . . , pn,k} for every k ∈ {2, . . . ,m− 1} (10)
or min {p1,m, . . . , pn,m} ⩾ max {p1,k, . . . , pn,k} for every k ∈ {2, . . . ,m− 1}, (11)

then the JG algorithm applied to the flow-shop project consisting of the two composite machines

Machine 1′, defined as the composition of Machine 1, . . . , Machine m− 1, and

Machine 2′, defined as the composition of Machine 2, . . . , Machine m ,

where, at each composite machine, the processing duration of each job is defined to be the prod-
uct of the job’s processing durations at the composed machines, produces a job order which is
optimal for the original m-machine project.

For example, consider a four-machine flow-shop project, call it Project D, involv-
ing Job 1, Job 2, Job 3, and Machine 1, Machine 2, Machine 3, Machine 4, where the
processing times are given in Table 8.

Machine Job 1 Job 2 Job 3

Machine 1 5 3 4

Machine 2 1 4 2

Machine 3 3 4 4

Machine 4 5 4 6

Table 8: The processing duration, in minutes, of each job at each machine for Project D.

Notice that the project given by Table 8 satisfies the condition (11), namely,

min {p1,4, p2,4, p3,4} ⩾ max {p1,2, p2,2, p3,2}
and min {p1,4, p2,4, p3,4} ⩾ max {p1,3, p2,3, p3,3} .

14



Machine Job 1 Job 2 Job 3

Machine 1′

(Composition of Machines 1–3)
5⊗ 1⊗ 3 = 9 3⊗ 4⊗ 4 = 11 4⊗ 2⊗ 4 = 10

Machine 2′

(Composition of Machines 2–4)
1⊗ 3⊗ 5 = 9 4⊗ 4⊗ 4 = 12 2⊗ 4⊗ 6 = 12

Table 9: The processing duration, in minutes, of each job at each composite machine
for Project D.

t
2 4 6 8 10 12 14 16 18 20 22 24

J1

J1

J1

J1

J3

J3

J3

J3

J2

J2

J2

J2

M1

M2

M3

M4

Figure 6: A time diagram for Project D, showing the job being processed at each ma-
chine at any given time t, using the job order 1, 3, 2.

Therefore, an optimal job order can be determined by Proposition 5. By defining Ma-
chine 1′ as the composition of Machines 1–3, and Machine 2′ as the composition of
Machines 2–4, we obtain the two-machine project given by Table 9.

The JG algorithm then gives the optimal job order 1, 3, 2. Constructing the associ-
ated time diagram (Figure 6), one finds that this order gives a total time of 25 minutes.

Unlike the JG algorithm (Proposition 2) which applies to all two-machine projects,
the method for three and more machines provided by Propositions 4 and 5 apply only
under specific sufficient conditions. Indeed, even the scheduling of three-machine
flow-shop projects is known to belong to a class of hard problems referred to as NP
problems: problems for which no polynomial-time solution algorithm has been found.
In fact, it is an NP-complete problem [1, Proposition 7]: a problem for which the finding
of a polynomial-time solution algorithm implies the finding of polynomial-time solu-
tion algorithms for all NP problems. For three-machine projects, several alternative
methods which apply under weaker sufficient conditions are discussed in [2, Chap. 8],
while a general algorithm — called a branch-and-bound algorithm — is discussed in
[1, Sec. 4]. For m-machine projects, a general algorithm is discussed in [4].

15



Acknowledgements

This article is a condensed version of the undergraduate thesis written by the first
author, supervised by the second and third authors. The first author would like to
thank his examiners, Liem Chin and Agus Sukmana, for their valuable comments.

References

[1] J.-L. Bouquard, C. Lenté and J.-C. Billaut, Application of an optimization problem
in max-plus algebra to scheduling problems, Discrete Applied Mathematics 154
(2006), 2064–2079.

[2] R. Bellman, A.O. Esogbue and I. Nabeshima, Mathematical Aspects of Scheduling
and Applications, Pergamon Press, Oxford, 1982.

[3] J.B. Fraleigh and N.E. Brand, A First Course in Abstract Algebra, 8th edition, Pear-
son, New Jersey, 2021.

[4] R.D. Smith and R.A. Dudek, A general algorithm for solution of the n-job, M -
machine sequencing problem of the flow shop, Operations Research 15 (1967),
71–82.

[5] B. Heidergott, G.J. Olsder and J. van der Woude, Max Plus at Work: Modeling
and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its
Applications, Princeton University Press, Princeton, 2006.

[6] S.M. Johnson, Optimal two- and three-stage production schedule with setup times
included, Naval Research Logistics Quarterly 1 (1954), 61–68.

[7] R. Johnsonbaugh, Discrete Mathematics, 8th edition, Pearson, New Jersey, 2018.

[8] H.S. Kasana and K.D. Kumar, Introductory Operations Research: Theory and Ap-
plications, Springer, Berlin, 2004.

[9] R. Nickerson, Mathematical Reasoning, Psychology Press, New York, 2010.

16


	Introduction
	The two-machine case
	The max-plus algebra
	Solving the two-machine case
	The multi-machine case

