Parabola Volume 7, Issue 3 (1971)

AN EXAVPLE OF COMPUTER PROGRAMMING

The following problem was considered for publication in
"Parabola', but rejected as the editorial committee could find no
reascnable way of solving it. "The number 273 (written to the base
10) 1s equal to 333 (written to the base 9) and also to 111
(written to the base 16). What other integers M < 10000 can be
represented as KKK (written to the base J > K) in two different ways"?

This problem 1s very sultable for sclution by computer. So
let's work out a way of solving it. Suppose you had a supply of
paper with 10000 lines numbered 1, 2, ... , 10000 with the numeral
0 on each line. Note that the only possible choices of base J are
2, 3, 4, ... , 99 (for 1002+100+1 > 10000). For each of these
?alues, you could calculate J2+J+1. Then the integer K must be at
least 1, and also

K < J-1
(J2+J+1)K < 10000
i.e. K < minimum of J-1 and 10000/(J?+J+1).

So you could, for each value of K from 1 to this upper bound,
¢alculate K(J2+J+1) = M, cross out the number on line M and write in
the next higher number. This could be done for each value of J.
Then the 1llst could be searched for numerals greater than 1.

This would be very tiresome to be done by hand, but
@¢lectronically the process 1is reasonably efficient. So these ideas
were the basis of the followlng program in the language FORTRAN.

0001 DIMENSION NUMBER(10000)
0002 DO 100 I = 1, 10000

0003 100 NUMBER(I) = 0

0004 DO 200 J = 2, 99

0005 JX = J%J + J + 1

0006 JMIN = MINO(J-1,(10000/JX))
ooy - DO 200 K = 1, JMIN

0008 M = K#JX

0009 200 NUMBER(M) = NUMBER(M) + 1
0010 300 FORMAT (20X, I5, ' HAS ', I1, ' SUCH REPRESENTATIONS.'))

0011 DO L4oo I = 1, 10000

0012 IF (NUMBER(I).LT.2) GO TO 400
0013 WRITE (3,300) I, NUMBER(I)
0014 400 CONTINUE

0015 STOP

0016 END

13.

Let's go through it line by line.

0001

1002

Q003

good

g005

Q006

Qo007

0008

0009

0010

0011
0012

This tells the machine to choose 10000 places in 1ts memory,
and call them NUMBER(1), ..« » NUMBER(10000) .

This is a simple DO-loop. The machine 1s told to work its wdy
down to the line labelled 100 (the programmer labels lines
only when necessary) using the value I = 1, then agailn with
the -value I = 2, and sO on - 10000 times in all.

This tells the machilne to cancel whatever was stored in
memory place NUMBER(I), and put the number 0 there instead.

This starts another DO-loop. It is clear that the possible
choice of bases J are between 2 and 99 (note 1002+100+1 >
10000) .

The integers representable as KKK (written to the base J) are
the multiples of J%+J+1. So the machine is told to calculate
this number and to put it in a phase in its memory called JX.
These names of places are chosen to help the programmer.

The possible choices of the integer K are limited by the
requirements that it be at least 1 and at most J-1. We also

" heed the product K#JX at most 10000. So the machine

calculates (using the standard function. MINO) the lesser of
J-1 and 10000/JX. The machlne rounds off 10000/JX to the
integer below. It is-stored in a new place, JMIN.

Here a tﬁird DO-loop (nested inside the second) starts. We
will consider successively values of X from 1 to JMIN.

The integer M = J#JX 1s calculated. It is at most 10000
(remember how we defined JMIN?)

The integer stored in place NUMBER(M) 1s now increased by 1.
S0 NUMBER(I) will ultimately contain the number of such
representations of I. Both the second and third DO-loops
terminate here.

This just prescrilbes a method for writing out two integers,
one of five digits, one of one digit. As it will be used
later, it 1s labelled 300 for reference. This 1line could be
put elsewhere in the program.

This starts another DO-100CP.
The machine is told to determine whether the integer in place
NUMBER(I) is less than 2. If 1t is, 1t skips line 0013 and

goes to labelled line 001l. As we will see, it does nothing
for these values of T.

1,

0013 This 1line is reached only for those values of I which have
two such representations. I, and NUMBER(I) are written out
by the method labelled 300. .

0014 This 1s a dummy line to mark the end of the fourth DO-loop.
Why would it have been wrong to omit this and label the
previous 1line 4007

0015 The machine 1s told tb stop when 1t reaches this line.

0016 END shows that the program has ended.

The final printout looked 1like this:

273 HAS 2 SUCH REPRESENTATIONS.
546 HAS 2 SUCH REPRESENTATIONS.
931 HAS 2 SUCH REPRESENTATIONS.
3549 HAS 2 SUCH REPRESENTATIONS.
3783 HAS 2 SUCH REPRESENTATIONS.
4557 HAS 2 SUCH REPRESENTATIONS.
7566 HAS 2 SUCH REPRESENTATIONS.
9114 HAS 2 SUCH REPRESENTATIONS.

You may care to find these representations.

The program can easlly be changed to examine the integers
< 100000. The new output lists twenty-six numbers between 10000 and
100000 with two such representations and one (67053) with three such
representations.

67053 = 3(149% + 149 + 1)
= 21(562 + 56 + 1)
= 31(U462 + 46 + 1).

Peter Donovan.

Note: If you have a comparable problem which you would like run on
the computer, write in and we will see what we can do - Ed.

* % %

?ry this card trick

Cut a pack of cards into two piles so that one pile contains
between 20 and 30 cards. (This is essential for the trick to work.)
Count the number of cards in the smaller pile and add the diglts of
the number together. For example, if there were 23 cards in the
smatler plle you would add 2 and 3 to get 5. Now look at the fifth
card from the bottom of the smaller plle, replace 1t, and put the
smaller pile on top of the larger pile. The card you looked at
will be the 19th card from the top. (Explanation on page 36)

15-

