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PYTHAGORAS AND ALL THAT

Man seems to have known of Pythagoras' Theorem since the early
days of ecivilisation, although the Greek geometers were the first to
provide-a logical proof. Indeed the 3,4,5 triangle is still widely
fised in building to ensure that two brick walls are laid perpen-
dicular to one another.

Sets of three integers which satisfy a? + b? = c? are called
Pythagorean triples. It would be useful to know 1f there's a
formula for these triples; let's look. :

First, if {a,b,c} is such a seti so is‘{ka,kbikc}, where k 1s
any non-zero integer, as a2 + p? = c2 implies (ka)? + (kb)2 = (ke)?,
We therefore look only for "primitive" sets: sets with no_ common
factors. However, if a = hx and b = hy, then c? = h?(x%+y?) so h?
hust divide c¢2? which, in turn, means h must .divide c¢. We find,
gimilarly, that if 4 divides both a and c then it must divide b and

$o0 on. If we wrlte the greatest commen divisor of r and s as (r,s);
this means that in a primitive Pythagorean triple we have (a,b) = (b,e)=
{c,a) = 1. Consequently only one of {a,b,c} can be even,

We now show that one must be even and it can't be c¢c. The square
¢of an even number (2n)? = Tn? = 0(mod 4) and the square of an odd
humber = (2n+1)2 = U4n +4n+l = 1(mod 4). We cannot have each of
{a,b,c} odd as 1 + 1 = 2(mod 4) not 1, while we cannot have less
than two odd. On the other hand, ¢?2 = 2(mod U4) is impossible so we
¢an't have both a and b odd. We therefore must finish up with one
6f {a,b} even and the rest of {a,b,c} odd.

Suppose 1t's b that's even. As we are to have b2 = c?-a? =
(c-a)(c+a) with a and ¢ odd, then each of (c-a) and (c+a) will be
even. But, if 4 divides (c-a) and (c+a) then 1t divides 2c =
(c-a) + (ct+a) and 2a = (c+a) - (c-a). As (a,c) = 1, thls means that
2 1s thelr only common factor. Indeed, as an odd number 1is congruent
to 1 or 3(mod 4) 1t is easy to work out that one of (c-a), (c+a) must
He congruent to 2(mod 4) and the other must be divisible by 4.

So both %(c+a) and %(c-a) are integers, one odd, one even, and
Having no common factors except 1. But %b 1s also an Integer as b is
even and (%b)? = %(c+a).%(c-a). Now if x, y, z are whole numbers and
22 = xy where (x,y) = 1 each of x and y must be perfect squares. Wé
put %(c+a) = m?, %(c-a) = n?, remembering that m # n(mod 2) and
(m,n) = 1. Then ¢ = %(cta) + %(c-a) = m?+n?, a = L(cta) - %(c-a) =
m?-n? and (%b)2 = m?n? giving %b = mn or b = 2mn.

What we have done 1s to show that all primitive Pythagorean
triples must follow these formulae. It 1s easy to check that
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{m2-n2)? + (2mn)? = (m2+n?)? so that, in mathematical language, the
conditions are both necessary and sufficient. Thus m = 2, m=1
gives {3,4,5}; m =3, n = > gives {5,12,13}; m = 4, n = 3 gives
{7,2“,25} and so on.

Naturally, having solved the problem of a?+b? = c?, it seems
sensible to look at the more general problem a' + b = ¢ for n > 2.
Unfortunately Fermat's Last Theorem states that there are no
solutions to this equation, whatever the value of n. Mathematicians
believe in the truth of this theorem - BUT no general proof has yet
been found. The French mathematician Plerre de Fermat, 1601-1605,
after whom the theorem 1is named, wrote on the margin of a book on
numbers by Diophantus that he had found "a truly marvellous proo i
but "it was too long for the margin". There has been argument ever
since whether he was right in his claim or not; his proof has never
been found. Quite large money prizes were offered in the 19th
tentury for a proof; none was ever won, though the endeavour to
produce a proof led to many valuable mathematical investigations
being undertaken by Kummer and others. On the other hand, the
- prizes offered led to a vast number of incorrect proofs belng
produced by amateur mathematicians; so much so, that the
mathematician Landau kept a supply of printed letters containing the
sentence: "On page .., lines .. to .. you will find there is a
mistake". :

HoWever, the theorem has.been proved true for n < 253,747,889
(which is a prime number). We only need to consider prime numbers

for n because akp + bkp = ckp automatically gives the solution

(ak)p + (bk)p ='(ck)p for n = p. If there are no solutions for
nh = p, there can't be any for n = kp.

Those readers interested in learning more about the theorem
ray like to read the fuller article on it in Vol 5 No 1 of Parabola.
Tncidentally, the proof for n = L is given there.

There are other directions in which we can go. We can ask for
any numbers, not just squares, which are the sums of two squares:
thus 8 = 2%42%, 34 = 32452, 17 = 42412, It can be proved that for
all prime numbers p of the form U4n+l, there 1is a unique pair of
numbers a, b such that a?+b? = p. Thus 13 = 32422 only, although
65 = 72+4% and 65 = 82+12%.

Again, given n, we can ask what the smallest number, m, is so
that every integer can be written as the sum of m, or fewer, n'th
pcwers. Thus, for n = 2, m = L: every integer can be written as
the sum of U, or fewer, squares e.g. 6 = 52492412 7 = 22412412412,
8 = 22422, 9 = 32, etc. We can go on to ask which numbers cannot
be written as the sum of less than four squares. The answer to
these and many other such questions are known, but there is always

the possibility that shorter or more elegant proofs may be found.

* % %
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Follow-up problems

s Prove that numbers of the form Un+3 cannot be represented as
a?+b?,
5. Show that if ¢ = a?tb?and f = d2+e? then cf = p?+q? for some

integers p, 4.

3. Show that if m = a24b2+c2+d? and n = e?+f2+g?+h? then mn =
p2+q +r2+s? for some integers p, 4, ¥, S-. (Some considerable
algebraic manipulation is required, or else a knowledge of
quaternions.)

Iy, Prove that numbers of the form Mk(8h+7) cannot be written as
the sum of less than four squares. ‘

B Prove that if c¢ 1s the sum of two squares thén so 1s 2c. Also
prove the converse: that if 2c¢ is the sum of two squares, then
so is c.

M.G. Greening.

St

112 a2 332 yy2

This group of X-mas trees was con-
tributed by Helen Pollack (11 years
0ld) 6th Class of Woollahra Demonstr-
ation School. It illustrates some

interesting patterns arising from e e
e e finding multiples of 11 and thelr
squares. To retain the symmetry,
o @ e she did not "carry" in cases of 5 e @ o
and 6. It can be extended for

numbers greater than 10. Can you do
this?
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