Parabola Volume 8, Issue 3 (1972)

THE PENDULUM

1. The physical system ahd the forces acting on it

The system which we consider consists of a pendulum bob of mass m
connected by a rigid rod of negligible mass to the pivot. This system is illustrated
in Figure 1. We emphasise that we are talking about a rigid rod rather than a
flexible string, so that it is possible for the pendulum to swing all the way up into
vertical position on top of the pivot and stay there for an appreciable time.

At any given moment the pendulum rod makes an angle § with the downward
vertical direction, as indicated in Figure 1. The position of stable quilibrium is ¢
=0, when the mass is in its lowest possible position. We shall assume that the
entire system is free of friction, or more practically, that frictional forces can be
ignored to a good enough approximation. The purpose of this discussion is to find
out what happens when the usual approximation of only small angles of swing is

no longer valid.
PIVOT

Figure 1: The pendulum with rigid, massless rod

Let us look at the forces which act on the pendulum bob in the position
indicated in Figure 1. These forces are two, namely the force of gravity which acts
downward and has 3 magnitude equal to mg, and the force exerted by the rod,
which force we shall call the tension and denote by 7. This latter force acts in the
direction of the rod. The two forces are shown in Figure 2. Also shown is the

Since the length / of the rod is constant (assumption), it is convenient to
rewrite the vector equation of motion,

E=ma, (1.1)



by decomposing the equation into two components, one along the direction of
the rod and pointing towards the pivot, and the other at right angles to that
direction. Let us first consider the components at right angles to the rod. The arc
length from the equilibrium point to the actual position of the pendulum bob as
shown in Figure 1is given by /0 where of course the angle 8 is measured in radians.
The time derivative of this gives the component of velocity in the direction of

increasing 6, i.e. positive if the pendulum bob is moving upward towards the right.
This velocity component is given by :

vg =9 (19) =19 | (1.2)

Finally, the acceleration component in the same direction is the time derivative of
this velocity component,

a9 = Jr tg) =1 8L (1.3)
This actually needs some justification, and interested readers are referred to the
article on planetary motion in Parabola Vol 7 No 2.

Let us now write down the component of Newton's law, equation (1.1}, in the
direction of increasing 8. We know the acceleration component from equation
(1.3), and we know the component of the force by looking at Figure 2, and
noting that this component, of value mg sin @, acts in such a direction as to
attempt to make the angle 8 smaller, and therefore must be given a negative sign.

Figure 2: The forces acting on the pendulum bob

The component of equation (1.1) therefore reads as follows:

—mgsing = m/ 928 (1.4)



The first thing to notice about equation (1.4) is that the mass of the pendulum
bob cancels out altogether. This is an important fact, indicating that the motion
of the pendulum is quite independent of the mass of the pendulum bob, to the
extent that our basic approximation of ignoring friction is valid. In practice, if the
pendulum has a higher mass, the tension and weight become bigger, and for the
same speed of motion frictional forces are likely, although not certain, to be
relatively less important. But if friction can be ignored, the mass of the pendulum
bob does not matter at all. Cancelling out the mass, we get the equation of
motion for the angle 9 in the following form:
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The second important fact about this equation of motion is that we don‘t have
to know the tension in the supporting rod at all in order to determine how the
angle ¢ depends on time. If we know the value of 8 at time t =0 for example, as
well as the value of the angular velocity do/dt at the same time then equation
(1.5) can be solved, at least in principle, to give @ as a function of time for future
times. Nothing else is needed.

Nonetheless it is of interest to also determine the tension r. We do this by
writing down the other component of the vector equation (1.1), namely the
component corresponding to a direction along the rod pointing towards the pivot.
The acceleration in this direction can be obtained from the usual formula for the
centrifugal acceleration, namesly v2/r. In this case the speed v is given by equation
(1.2), the value of r is the length / so that

v2Z _ (do,y?

= G
With this value of the acceleration component, the component of the equation of
motion {1) now becomes

r-—mgcose=ml(c‘?—f)2. (1.6)

It is important to note that this does not mean that the tension in the
supporting rod is equal to the component mg cos @ of the weight. This is true
only under very special circumstances, namely when the angular velocity dé/dt
happens to be 0. In the general case, we can solve the tension in the rod from
equation (1.6) to get



r=mgcos@+ml(g-f—)2. (1.7)

In principle, we have now solved certain problems. The motion itself, that is 6
as a function of time, is obtained from the differential equation (1.5) and the
necessary initial conditions, for example at time t =0 the value of § and do/dt
might be given. Once 6 is known as a function of time we then get the tension in
the rod from equation (1.7). All that remains, therefore, is to solve the
differential equation (1.5). However this turns out to be far from trivial, and the
solution cannot be expressed by means of the common functlons of differential
calculus.

2. The Energy Integral

In this, as in many other problems in mechanics, it is possible to get useful and
very valuable information from the so-called energy integral. For the sake of
convenience, since the mass drops out of equation (1.5) anyway, we shall be
dealing with the energy per unit mass, rather than the quantity which is normally
called energy in mechanics.

To obtain this energy per unit mass, we multiply both sides of equation (1.5)
by the quantity /2dg/dt. This results in
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This equation can also be written in the form

E [% (1 )2 + Ig {1—cos8)] = 0, (2.1)

therefore the quantity in square brackets does not change with time. This
quantity is the energy per unit mass and we shall denote it as E,

E="% (1d9) + Ig(1—cos@ ). (2.2)

The first term is %v?, the kinetic energy divided by the mass m. The second
term is of the form mgh, again divided by the mass m, i.e. of the form gh where

h=1/{1—-cos@)

is the height above the equilibrium position of the pendulum bob, as seen from



the geometry of Figure 1. This second term is the potential energy per unit mass,

In order to determine the value of the energy E, we merely need to know its
value at any one time, since we know from equation (2.1) that the value of E does
not change with time. To be definite, we start off the pendulum by giving it an
initial angular velocity of value wq in the positive direction, starting at its
equilibrium position. These initial conditions are given below:

Attimet=0: g =0 90=,

o=, (2.3)

When we substitute these particular initial conditions into the definition (2.2) of
the energy, we obtain the value

E=%20,2 (2.4)
We shall use the notation
= 1,72 (d0,2
T = %I (dt ) : (2.5)
for the kinetic energy, and
V=170g.(1—cos6) (2.6)

for the potential energy, so that the constancy of the energy takes the following
form:

T+V = E = %2 w,2. (2.7)
This equation is called the energy integral.

3. Use of the Energy Integral to discuss the motion

We shall now use these results to give a qualitative discussion of the possible
motions which this system of Figure 1 can perform. The only thing additional to
equations {2.5), (2.6) and (2.7) which we require is the obvious fact that the
kinetic energy, equation (2.5), can never become negative. Its smallest possible
value is 0. Therefore when we rewrite equation (2.7) in the form E — V =T, we
obtain the inequality E — V > 0, and therefore referring each to equation (2.4),

VLE = %{%w,2, (3.1)



It is therefore of obvious interest to plot the behaviour of the function V, the
potential energy function, as a function of the position angle 8 of the pendulum.
This is done in Figure 3. We see that the lowest possible value of the potential
energy is 0, and the highest possible value is given by

Vimax = 219 (3.2)

We can now distinguish four quite separate cases, namely:
Case 1. E = 0. In this case the pendulum hangs at rest in its equilibrium
position and there is no motion at all. That is, in equation {2.7) the kinetic
energy T is exactly O at all times, and V is at its minimal value 0.
Case 2. This case is defined by the inequality

0<E<2Ig | {(3.3)

and a typical example of an energy value in this range is shown in Figure 3. If we
draw a dotted horizontal line at this value of the energy, then this line meets the
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Figure 3: The potential energy (per unit mass) V plotted vs. the
position angle 6 of the pendulum

potential energy curve at the two abscissae indicated on the figure as 6., and
—0 m, respectively. These two values of the angle 8 define the maximum extent of
the possible motion of the pendulum around its equilibrium position, if the given
energy (equation (2.4)) falls within the range (3.3). The motion of the pendulum
is the typical to and fro pendulum-like motion between these two extreme
positions. However, unless the angle 6, turns out to be small compared to one
radian, the motion is by no means a simple harmonic function.



Let us find the value of the maximum angle of swing 8, from the initial
conditions (2.3) which lead to the energy value (2.4). At the extreme point of the
motion, when the pendulum bob is just turning around, the angular velocity dé/dt
is O at this moment, and hence sois the kinetic energy (2.5). The energy integral,
equation (2.7), therefore takes the form V = E at the extreme points of swing.
Substituting equation (2.4) for E and equation (2.6) for V, we obtain

1.9.(1 —cos 0y) =% 12042 (3.4)

We now use the trigonometric identity 1 — cos x =2 sin? (g ) to obtain

. D Bm ¥ l(.doz
sin® () i 7
and using the inverse sine function,
Om = 2sin™1 (29 /(1/g)). (3.5)

The inequality (3.3} ensures that the argument of the inverse sine in equation
{3.5) is between 0 and unity, as it must be.

Note that the result (3.5) is by no means trivial or what one would guess at by
some method of rough guessing. Nonetheless it is a completely scientific result for
our problem and tells us an enormous amount about the actual motion. The
pendulum swings between this maximum angle and its opposite angle on the other
side, going to and fro between these two extreme positions. And we now know
the maximum angle of swing directly in terms of the initial angular velocity of the
pendulum, w,, the length / of the pendulum, and the acceleration of gravity g.

Returning to the discussion of the inequality (3.3) and Figure 3, we now reach
the third case which is a rather peculiar one.

Case 3. Energy equals the maximum possible potential energy. In terms of an
equation, this condition reads

E=V, .. (3.6)

Substituting the value (2.4) for the energy and the value (3.2) for the maximum

potential energy we obtain the following value for the initial angular velocity w,
for this very special case:

wo =2V (1/g) . (3.7)



There is another way of obtaining the same value of energy. Instead of starting
with the initial conditions as given by equation (2.3) we start off the pendulum at
rest, but in its position of unstable equilibrium, with the pendulum bob direct
vertically above the pivot. This is an equilibrium position, in the sense that when
things are carefully enough balanced, there is no tendency for the pendulum bob
to move downwards either to the right or to the left. But it is of course an
unstable equilibrium. The slightest perturbing force is enough to move the
pendulum away from this position and make it fall down on one or the other side.
Nonetheless the ““motion’ in this position of unstable equilibrium must be
recognised as a possible motion of the system, namely, no motion at all.

Case 4. Energy larger than the maximum potential energy. The inequality which
defines this case is

E> Vo (3.8)

When we substitute from equations (2.4) and (3.2), we find that this condition
amounts to the inequality

wo? >34, (3.9)

The qualitative nature of the motion in Case 4 is completely different from the
motion in any of the earlier cases. We can never get into a situation where the
energy is exactly equal to the potential energy; this means that the kinetic energy
can never be zero. Rather, no matter what the angle § might be, the energy E in
equation (2.7) is larger than the potential energy T. Thus the pendulum does not
ever stop, but merely keeps on rotating about the pivot with varying speed. The
speed of rotation is highest when the pendulum is near its bottom position, and
smallest when the pendulum is near its top position directly above the pivot. But
at no time is the speed of motion reduced to zero, and the nature of the motion is
therefore completely different from the one which we normally think of as
“pendulum motion.” Nonetheless this is a. valid and quite permissible and
observable motion of a pendulum,

Note also that inequality (3.9) is a condition on the square of the initial angular
velocity w with which we start off the pendulum. This allows either a positive or
a negative value of w,. If the initial angular velocity w, is positive, meaning that
we start off the pendulum moving in counter clockwise direction, then it
continues moving in a counter clockwise direction at all future times. {f the initial



angular velocity wq is negative, then the pendulum continues to rotate in the
clockwise direction at all times. If there is 3 high enough initial angular velocity to
satisfy the condition (3.9) for Case 4, the pendulum never changes its direction of
motion.

It is of extreme importance to notice how much information one can obtain
about the qualitative nature of the motion by using the energy integral, without
at any stage really solving the equation of motion {1.5). The actual solution of
that equation involves mathematics well beyond that which is available to high
school students. Nonetheless a great deal of essential information can be obtained,
including a definite expression for the period of the motion in all four cases, by
making use of the energy integral. We may come back to this discussion on
another occasion.

J. Blatt

This is an abridged version of a talk given by Professor Blatt of the School of
Mathematics, University of New South Wales, to a Sydney wide gathering of First
Level Mathematics students, held on 21.5.72 at the University of Sydney.
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