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PARTITIONS

In how many different ways can 4 be expressed as a sum of positive integers?
The answer depends on whether we count sums like 1+ 3 and 3 + 1 as distinct or
not; both kinds of problems are interesting. If we count them as distinct then we
have the following eight possibilities:

T+1+1+1, 1+1+2, 1+2+1, 143, 2+1+1, 242, 3+1, 4.

On the other hand if we regard the order in which we write the summands as
being irrelevant, we only have five distinct possibilities:

1+14+1, 1+1+2, 1+3, 2+2, 4.

(Observe that 4 itself is regarded as a “sum,”’ with only one summand.)

Generally, given a positive integer n, we want to know in how many different
ways can it be expressed as a sum of positive integers. In other words, we want
the number of distinct solutions of the equation
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where x,, x,, etc. are positive integers and the number of summands, r, is
arbitrary (possibly 1). Curiously, the first of the two problems, namely when two
solutions which differ only in the order of terms are counted as distinct, is the
easier one. Indeed if F(n) denotes the number of these solutions, then the number
of those solutions in which x, = 1is F(n—-1), those in which X, = 2is F(n-2),
generally those in which X, = k for a fixed positive integer k < n is F(n—k), since
then n=k + Xgt...+x,n—k=x,+... x, and the number of these solutions is

F(n—k). Now X, must necessarily take one of the values 1, 2, ..., n, and these
being mutually exclusive we have the formula
Fin)=F(n—1)+ F(n=2)+ ...+ F(1)+1, n>1, (2)

the last term 1 coming from the single solutionr= 1, Xy =10,
From this formula we can easily determine F{n); for, writing n + 1 instead of n
we obtain

Fin+1})=F(n)+F(n=1)+...+F{1)+1
and subtracting from it the previous equation we get |
Fin+1)—=F(n)=F(n), F(n+ 1)=2F(n).

Now F(1) =1 therefore F(2) = 2, F(3) = 2F(2) = 2? etc., generally f(n) = 2"~
(by induction, if you like). This checks with F(4) = 8 that we found earlier.



The second problem when the order of summands is irrelevant is more
interesting but much more difficult. We may assume that the summands are
arranged in an order of increasing magnitude and we are looking for solutions of
equation (1) with the side condition
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We call such a solution a partition of n and denote the number of distinct
partitions of n by P(n). By enumerating all possibilities one finds easily P(1) = 1,
P(2) = 2, P(3) = 3, P(4} = 5 {as we have seen earlier), P(5) =7 (namely 1+ 1+ 1+
1+1=1+1+1+2=1+1+3=1+2+2=1+4=2+3=5),P(6)=11etc,,
but this sequence does not suggest any simple rule for the general term of the
sequence. There is a comparatively simple recursive formula which can be used for
the calculation of P(n), namely

P(n} = P(n—1) + P{(n—2} — P(n—5) — P(n—7) + . .. (3)
where the general form of the expression on the right is
(— 1)1 [P(n — %k(3k—1)) + P(n — %k(3k+1))], k=1,2,3,...,

but the proof of this formula is much more difficult than the proof of (2) and
there seems to be no simple expression for P(n} which will satisfy equation (3).
There is an exceedingly complicated expression due to the famous British
mathematician G.H. Hardy and the equally famous Indian mathematician S.
Ramanujan but even to write down the formula here with explanations would be
practically impossible and we shall not attempt it.

There are many other interesting problems concerning partitions, for instance
we might be interested in the number of partitions in odd parts such as (in the
caseofn=4)1+1+1+1, 1+ 3; or unequal parts such as 1+ 3, 4; or m parts
such as 1+ 3, 2 + 2 when m = 2; or in parts with the greatest part equal to m such
as 1+ 1+ 2 2+ 2whenm=2, etc. Looking at the partitions of 4 or 5 we notice
that the number of partitions into m parts is always equal to the number of
partitions with the largest part equal to m. This can be proved generally as
follows:

Represent partitions by rows of dots as shown in the
figure which represents the partition 1 + 2 + 2 + 4 of 9
(the total number of dots is equal to.n and the number of

dots in each row is equal to the parts in which n is il
partitioned). Now to each partition of n there corresponds Ll
a “conjugate’ partition, obtained by reading (from right to ®© e o o

left) the number of dots in the vertical columns. For



instance the conjugate of the previous partition is 1 + 1+ 3 + 4, The length m of
the bottom row gives the size of the largest part, and this is clearly equal to the
number of columns in the diagram, that is the number of parts in the conjugate
partition. Thus we have established a one to one correspondence between
partitions of n with largest part equal to m, and partitions of n into exactly m
parts. This proves the theorem.

The following beautiful result is also true: The number of partitions into
unequal parts is equal to the number of partitions into odd parts. For instance 5
has three partitions into odd parts: 1 + 1+ 1+ 1+ 1,1+ 1+ 3,5, and three
partitions into unequal parts: 1 + 4, 2 + 3, 5. We shall again describe a one to one
correspondence between the two kinds of partitions.

Let n=x, +x, +...,0< X, <x, <...be apartition into unequal parts.
Now every X, can be written uniquely as 2% m where m. is odd and s, > 0, so we
have

n=2"Tm, +22m, +...
with no two terms equal. For instance 2 + 5 + 8 = 211+ 205 + 23 1is a

partition of n = 15 into unequal parts. Collect all the terms with m. = 1; their sum
will be either O (if no m. is 1) or of the form

(2" +2°1 42+ )1, 0<a, <b <c, <....
But the expression in brackets is just the binary representation of some positive
integer k, and it can be written as k,.1. Similarly, collecting the terms with m.
3weget8|ther00r(22+22+. )3 =k, -3 with k, > 0, etc. Hence
corresponding to the partition in unequal parts we obtain a solution of the
equation

n=k,.1+k,3+k;.5+... with k, = 0.

But this can be written as

n=1+1+,..+1+ 3+,..+3+565+...+5 + _,
k, times k, times k, times
which is a partition into odd parts. For instance in the previous example we
obtain

5={2' +23).1+03+2°5=101+0.3+ 1.5
=1+1+1+14+1+1+14+1+1+1+5,

A little reflection will show that this procedure establishes a one to one
correspondence between the two kinds of partitions. For instance in the case of n
= 6, the partition 1 +2+3=(1+2).1+ 1.3 correspondsto 1+ 1+ 1+3,2+4=



(2 +4).1 correspondsto 1+ 1+1+1+1+1, 1+5=1.1+ 1.5 carresponds to
itself (it is a partition both into unequal and into odd parts), and finally 6 = 2.3
corresponds to 3 + 3. .

For further reading the advanced reader may consult ‘An Introduction to the
Theory of Numbers’ by G.H. Hardy and E.M, Wright, chapter 19.

Problems

1. Write down the 11 distinct partitions of 6.

2. Prove that the number of partitions of n into m distinct parts is equal to the
number of partitions of n—m into m parts.

3. Determine the number of partitions of n
(a) into two parts,
(b) into three parts. - G. Szekeres
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Activity: The Platonic Solids

In the class of solids known as polyhedra there are five which stand out for
their complete regularity. These are known as the Platonic solids. As their name
suggests they have been known to man for thousands of years, and it is not such a
difficult job to prove that only five of them do exist. (See Parabola Vol 7 No 3).

You will notice in the diagrams and net diagrams on following pages the
regular features of these solids, they are:—

1. Each face has the same number of edges.
2. Each vertex has the same number of edges joined to it.
3. All edges are of equal length.

PLATONIC SOLID No. of edges No. of edges
per face per vartex
Tetrahedron 3 3
Hexahedron {cube) 4 3
Octahedron 3 4
Dodecahedron 5 3
icosahedron 3 5

An interesting activity for you is to copy the net diagrams from following
pages onto a piece of hard cardboard (empty ‘Corn flakes' packets are quite good)
and then cut out around the external lines. The internal lines are fold lines. You
need to be very accurate in both drawing and cutting out the nets, to end up with
a good set of platonic solids. If you enjoy this sort of activity, please let us know
- as there many other solids with interesting properties, that we can construct.



