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HOW NOT TO CALCULATE AREAS

If asked to find the area bounded by the parabola y = x2 the x-axis and the
line x = a, you would write, almost instinctively, area = JO x?dx = Ja°. It was not
always this easy! Before the invention of the calculus in the mid 17th century,
man had no such extensive tool available, and in his long struggle to find one he
recorded both successes and failures. In the following pages the reader will find a
few loosely connected historical interludes highlighting the nature of this struggle.

The first recorded attempts to find areas (and volumes) date back some 5000
years to the Babylonians. Many mathematical tablets, some dated at around 3000
B.C. have been deciphered and from these we can assert that the Babylonians
‘knew’ how to calculate the areas of rectangles and (at least isosceles) triangles. Of
course they failed to produce the formula area = ab for the area of a rectangle of
sides a and b, not only because they had no such notation, but more seriously,
because they could not multiply. To the Babylonians muitiplying a and b meant
adding a to itself b times. Hence they experienced great difficulty if neither a nor
b were integers. Nonetheless they did leave behind tablets containing example
after example on the calculation of areas of a rectangle. In this sense they also
knew the area of an (isosceles) triangle and of a circle. Their method for finding
the area of a circle of radius r corresponds, in today’s notation, to the formula:
area=(3.125)r2,

That the Egyptians also ‘knew’ the areas of rectangles and triangles may be
inferred from the following problem in the Moscow Mathematical Papyrus. This
important papyrus, discovered in 1890, dates from around 2000 B.C.
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Further problems in the papyrus offer a method for calculating the area of a
circle, viz, it is the area of a square of side 8/9 the diameter. In our notation this
corresponds to the formula: area = (3.16)r2. When one finds this formula being
used by the government of the day to assess land tax it is worth noting that 3.16
> m,

Until about 600 B.C. little advances beyond these primitive results were made.
In the hands of the Greeks, mathematics as a whole evolved from a descriptive
subject (as illustrated above)} into a theoretical and deductive science containing
precise statements (the theorems) complete with rigorous justifications (the
proofs). Without a doubt the greatest mathematician of the latter stages of Greek
mathematics was Archimedes (287—212 B.C.). Amongst many other results he is
credited with the first proof that the area of a circle is proportional to the square
of its diameter. The proof is based on the following lemma (attributed to
Eudoxus); If a and b are any given positive numbers, one can find an integer n so
large that a/2" < b (i.e., 27" » 0 as n > =). Here then is a (quite free) translation
of Archimedes’ result:

Theorem: Let CI and 02 be circles on diameters XY and AB. Then

area C XY)2 %
area 02 (;‘-‘«B;2 i

Figure 1

Proof: By way of establishing a contradiction suppose (*) is false. Then, for some
region = with area £ # area C, we have

(XY)?/(AB)? = areaC,/areaX ... (1)

Suppose that in fact area £ < area C (the case in which area Z > area C, can be
handled similarly). Bisect the arcs AB and BA at the points Cand D respectwely
Inscribe the square ACBD and circumscribe the square PQRS (see Figure 2}. Then
area PQRS = 2 x area ACBD, so that area ACBD = % x area PQRS > % area C,.
Hence if we denote by A, the shaded region (i.e. A, = C, — ACBD), we have

area A, <l2areaC, ... (2)
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Figure 3

Next inscribe an octagon AECFBGDH (with E bisecting the arc AC etc.) and
denote by A, the shaded region between C, and the octagon (see Figure 3). Thus

area Az = area C, — area AACBD — area A AEC — area A CEB (3)

—area A BGD —areaA DHA ...

However 2 area AAEC = area ACTU > area AEC (see Figure 4). Thus area
AAEC > % area AEC, a similar result holding for
the triangles CFB, BGD and DHA. Now area (AEC
+ CFB + BGD + DHA) = area A, so that area
(AAEC + ACFB + ABGD + ADHA) > 2 area A, .

It follows then, from (2) and (3), that area A,
< 1/2? area C,,.

Repeat this process finally arriving at a 2"-gon
_ inscribed in C, such that

Figure 4

1
area 02 — area Hn < L area Cz.

Then, by the principle of Eudoxus (with a = area C,, b = area C, — area =) we
can choose an n so large thatarea C, —areall < areaC, —area X. That s, area
n_>areaZ... (4),

Now inscribe a similar polygon I1 " in C,. By the known result that the ratio
of the area of similar polygons = ratio of the squares on their diameters, and by
(1),

(Xy)2 _ areall * areaC,
{AB}z area “n area ~
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which implies that

areal _ area_C_l ; ... (b)
area l'ln areall s

However, by (4), the left hand side of (5) is <1, whereas (because I _"is inscribed
in C,) the right hand side of (5) is >1. Thus a contradiction has been reached, and
so (*) holds. Q.E.D.

Using identical methods, Archimedes managed to prove the formulae for the
area under a parabola and the surface area of a sphere, cone and cylinder. This
technique of approximating the area under a curve by the areas of polygons is
known as the method of exhaustion as it both exhausts the area under the curve
and the person using the method. Via this exhaustive technique (to wit, by
actually inscribing a 96-gon in a circle) Archimedes obtained the estimate for =:
313 < 7<373,i.e 3.1408 < 7 < 3.1429.

The method of exhaustion is open to the following criticism: by and large it
does not help us find areas! To apply the technique one first must guess the right
formula — the technique may then be used to verify the correctness of that guess.
Thus the method is not a calculating tool — it is not yet a calculus. Nonetheless it
contains the germinal idea behind the integral calculus, and certainly after the
translation and printing of Archimedes’ works in 1544 it exerted a profound
influence on the evolution of the calculus.

It would however be a gross distortion of history to assert that the integral
calculus developed directly from Archimedes to Newton/Leibnitz. Along the way
a variety of different and ingenious attacks on the problems of area were made —
many of these being stimulated by the pressing needs of commerce, navigation
and astronomy. Of particular interest is an attack due to Cavalieri (1598 — 1647)
— a professor at Bologna and a student and disciple of Galileo Galilei. His work
entitled “The geometry of indivisibles” published in 1635 resurrected the Greek
controversy regarding the nature of space, coming out strongly on the indivisible
or atomic side. According to this view a line is made up of (a large number of)
points, an area of (a large number of) lines etc. Thus to find the area of a triangle
BC, Cavalieri considers it to be made up of n+1 lines containing 0, 1,2, ..., n
points respectively. Similarly the rectangle ABCD consists of n+1 lines each
containing n points (see Figure 5). Then

area ABC . sum of the lines in ABC
area ABCD sum of the lines in ABCD
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No doubt spurred on by this success, Cavalieri grew more ambitious and
attempted to calculate the volume of a cone by rotating ABCD about the base AB
as shown in Figure 6. Now if a line containing k points is rotated the resulting
area will be proportional to k?. Hence, as a volume consists of the sum of its cross

sectional areas,

Volume of Cone  _ 02 +1%2+22+ ., . n?
Volume of Cylinder FEE T

= 1/6nin+1){(2n+1)] _
n? (n+1)

b 0
3+6n‘

and (to paraphrase Cavalieri) as n is very large the ‘error’ 6—1'-‘ is very small and
hence may be neglected to give the correct answer of%,
Cavalieri then guessed that (neglecting small errors) for any positive integer m,

g™ e qih O b L
. -
N+ +p™ 4+ M

a result ‘equivalent to’ Jax"" dx = ml- -

Torricelli, a student of Cavalieri, criticized this method of indivisibles with the
following example:
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Let ABC be a non-isosceles triangle and for each point P on AC construct Q on
BC so that PQJIAB, and denote by P’,Q’ the feet of the perpendiculars from P and
Q respectively (see Figure 7). Then to each point P there corresponds precisely
one point Q (and vice versa) and clearly PP’ = QQ'. Thus, adopting Cavalieri’s
approach,

area ACD _ sum of the lengths of PP* _ 1 m
area BCD sum of the lengths of QQ'

Cavalieri appeared unconcerned by this criticism dismissing it with the reply that
if, for example, BC consists of 100 points and AC of 200 points, there will be
twice as many lines PP’ as there are lines QQ’ so the above ratio will not be 1.

In addition to the above examples, Cavalieri’s book contains a quite general
principle proved via the method of indivisibles.

Cavalieri's Principle: /f 2 regions have everywhere the same width they have
the same area.
ie. if R1 and R2 are such regions (see Figure 8), area Fl1 = area Rz- as for each P,
PQ=P'Q.
(Problem: State and prove this result via the integral calculus.)

An excellent illustration of the use of this principle was provided in 1637 by
the Frenchman Roberval. The (quite old) problem he solved was that of finding
the area under (an arch of) the cycloid. A cycloid is the path described by a point
on the circumference of a circle as that circle moves on a horizontal line, as shown
in Figure 9.

Galileo had, some 50 years earlier, suggested that the area under the arch PBQ is 3

times that of the generating circle, i.e. area PBQ = 37r2. Roberval confirmed this
belief,
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generating circle cycloid

\/\m\/

Figure 9

Consider one half PB of the arch, let A be the foot of the perpendicular
from B, and for each point R on
the cycloid construct S on the
diameter CP so that SRIIPA (see
Figure 10). Denote by T the point
on the semi-circle obtained by T S
extending SR, and let V be that
point on the extension of SR such
that ST = RV. As R moves along P—/ §
the cycloid, V describes a curve C. L
(In fact Cis a sine curve.) Then, for
each line SV in PVBC there is a line Figure 10
S'V'" in PVBA of equal length.

Hence, by Cavelieri‘s principle the curve C bisects the rectangle PABC into two
equal areas. Thus

area PRBA =area PVBA + area PVBR
=% area PABC + area PVBR
= Yalnr x 2r) + area PVBR
= area of generating circle + area PVBR.
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Next, by the above construction, each line RV in PVBR corresponds to a line ST
of equal length in the semi-circle PTC. So, again by Cavalieri’s principle, area
PVBR = area semi circle = 2 area generating circle. Therefore area PABR = 3/2 x
area of generating circle and the area under an arch of the cycloid is 3 times that
of the generating circle.

Such was the ingenuity needed to calculate simple areas. Via the same methods
(i.e. by a combination of Cavelieri’s principle and ingenuity), Pascal, in 1640,
obtained certain areas which, in our notation, correspond to the evaluation of
f”z sin"g dé for n=1,23.... Wallis in 1655 ‘observed’ that Cavalieri’s earlier
formula (6) holds for m = % so that {again in our language) _[ Vx dx = 2/3. Wallis
further ‘found’ that f V(1—x)? dx = /4.

At roughly the same time Cavalieri was developing methods based on the
notion of indivisibles, Fermat began utilizing the counter-notion of infinitesimals
— a concept fraught with as many difficulties as that of indivisibles. Fermat was
clearly inspired by Archimedes’ method of exhaustion, as his ‘proof’ that f xP/a
dx = aP/9%" ' /p/q + 1 shows.

To find the area under the curve y = xP/9 (p and q positive integers) from x =
0 to x = a first choose a real number r with 0 < r < 1 and consider the situation in
Figure 11.

To simplify the working write A aPaf e
=3a'’/9 and R=r'/9, and so 0< R (ra)Pq ¢ r;-}v-"'"""'
< 1. Then the heights of successive 7

rectangles (from right to left) are
AP (RA)P, (RZA)",..
and their areas are
AP(a—ra) = AP(A9—-RIAY)
= AP+a(1-R9),
(RA)P(ra—r?a) =AP*9(1—R9)RP*9, Za ra 8
(RZA)P (r?a—r3a) = AP*9(1—R9)R?Z [P0

Figure 11
So the sum of the areas of all the rectangles is

AP*4(1—R9) 30 (RAa vy KT)
nﬂ
and as RP*9 < 1, this geometric series has sum

S = AP*A4(1—R9) x —1
1__RD+CI

= AP*Q (1+R+R2+,..+RY"")(1—R)
(1+R+R?+...+RP*9-T)(1—R)
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= AP*Q 1+R+R2+ ... +RA!
1T+R+R%2+..,+RP*a-1

asR# 1.

The area under the curve can now be found by putting r = 1, so that the
rectangles have zero width. (Note that if r = 1, R = 1 so hoth the last step above
and expression (7) are inadmissable.) Then the area under the curve

=AP*q 5 1+1+...+1(qtimes) _ alp+al/a
i 137, 1{p+qt|mes) “ﬁT
am'q+1
—7qT1 Q.E.D.

Fermat's method was further developed by lsaac Barrow in his ““Geometric
lectures” of 1669. In particular, Barrow was able to compute foa tan x dx. The
scene was now set for Isaac Newton (a student of Barrow's) and Gottfried
Leibnitz to simultaneously but independently discover the underlying principles
of the calculus and to turn it into a calculating tool par excellence.

Dr J. Gray

Dr Gray is at present lecturing on the History of Mathematics to school teachers
who are enrolled in the M.A. course at the University of New South Wales — Ed.
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