Parabola Volume 10, Issue 1 (1974)

SOLUTIONS

Solutions to Problems 221—230 in Vol. 9 No. 3

Junior
4221 Find a 2-digit number AB such that (AB)2—(BA)? is a perfect square.

Answer: The 2-digit number AB is equal to 10A + B. Since x* — y2 =
(x—y)(x +y), we see that
(10A + B)2 — (10B + A)? = (9A—9B)(11A + 11B) = 32.11(A—B)(A + B).

It is clear that this is a perfect square if and only if

(A—B)(A + B) = 11k? where k is an integer (1)
Remembering that A and B are digits, A—B is less than 10 and so it is impossible
that A—B is a multiple of 11. (We are here ignoring the trivial solutions in which
A = B.) Hence A + B must be a multiple of 11 not exceeding 18 (since A and B
are digits) i.e. A+B=11.

From (1) we now obtain A—B = k2.

Since A—B is less than 10, there are only 3 values of k? to be tried, viz. 1, 4,
and 9. Only the first of these yields a solution in positive integers less than 10 viz.
A =6, B = 5. Thus the only answer is given by (65)2—(56) = 9.121 = (33)2.

Successful Solvers: J. Archibald, R. Borg, G. Cleary, D. Crawford, P. Hatzi, T.
Hatziandreou, R. Hawkins, S. Howdin, G. Longbottom, P. Lorizzo, M. Moy, G.
Sherriff, W. Williams, (all from South Sydney Boys’ High); M. Reynolds (Marist
Brothers, Pagewood).

J222 You can see easily that 32 + 4% = 52 Prove that there are no 3 consecutive
integers such that the cube of the largest equals the sum of the cubes of the
others.

Answer: Suppose on the contrary that there are 3 consecutive integers n—1, n, n +
1 such that (n—1)2 +n3 = (n + 1)3. Simplifying yields nd—6n2 —2=0o0r
nZ(n—6) = 2

There are several ways of seeing that no integer n satisfies this equation. For
example, if n is odd the left hand side is odd and so cannot equal 2, whilst if n is
even the left hand side is divisible by 4 and so cannot equal 2. Or, again, n2 must
clearly be a factor of 2. The only possibilities are n = =1, neither of which is a
solution.
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Intermediate

1223 | think of a whole number x. | cube it. | add the digits of the cube. If |
obtain the number | first thought of, find all possible values of x.

Answer: | x has k digits (so that 10¢"" < x) then x3 has at most 3k digits, each
digit being at most 9, whose sum x cannot exceed 3k.9. Hence 10%1" < 27k. It
follows easily by trial that k = 1 or 2. i.e. x has at most 2 digits. Its cube then has
at most 6 digits and so x < 54. In fact, since the first digit of 543,533, ...473%is
a 1 not a 9, the largest possible sum of the 6 digits is 46. The possibilities x = 46,
45 or 44 can also be discarded by observing that the last digits of the cubes are 6,
5 and 4 respectively, so the sum of digits is at most 43. Thus x < 43.

Next we use the well known fact that, when divided by 9, any whole number
leaves the same remainder as the sum of its digits does. It follows that x and x3
must both leave the same remainder on division by 9. If we write x = 9qg + r with r
=0,1,2, ... 7 or 8, then x3 = 729q% + 243q?r + 27qr® + r°. Since x is the sum of
the digits of x3 r must be the remainder when r° is divided by 9. Trying all the
above values for r, we see that r = 0, 1 or 8 and so (since x < 43)x=1,8,9, 10,
17, 18, 19, 26, 27, 28, 35, 36, 37.

Trying these in turn we find that the ones which satisfy the conditions are: x =
1, 8, 17, 18, 26 or 27. (Their cubes are, in order, 1,512, 4193, 6832, 17576, and
19,683.) |

Successful Solvers: C. Bonkowsky (Kogarah High), J. Burnett (James Ruse Ag.
High), D. Crocker (Sydney Boys’ High) — partly, M. Diamond (Hollywood Senior
High W.A.), J. Holten (East Hills Boys’ High). Also P. Anderson, J. Archibald, R.
Borg, G. Burgess, G. Cleary, D. Crawford, P. Hatzi, R. Hawkins, S. Howdin, S.
Lawrence, P. Lorizzo, R. McLachlan, M. Moy, M. Pandoleon, P. Stimitsiotis, B.
Talbot, S. Walters, R. Williamson (all from South Sydney Boys' High).

1224 Calculate the following sums:

1 1 1
(a) 2T stz - Yoo
(b) 1 + 1 + 1 + + 1
1.2.3 234 3.4.b g n=2)Y{n—1).n
{c) LIRS oL MR + -
123.4 2345 m=37.n—2}.{n=1).n"
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Answer: (a) L+ g+ gl ...+ el =

=1-1
n
(b) 1.;.3+2.:13.4+3.1.5+"'rﬁ—2)(1n—1)n
=3l — g} + Sl — ) + gl — ) -
+ 3 =T — e

= il — by
2'7.2 n—1)n

1 1 1
© 533t s3as ™t ¥ m=aRoT=Tn

= 1

Bt o8 aalie oo
3z 37 t 33 — 77 ) ...

1 1 - J )
3'(n=3)(n=2){n=-1) {(h=2)(n—1)n

A, R
3'1.2.3 (n=23(n—-1)n""

Successful Solvers: J. Burnett (James Ruse Ag. High), C. Sparks (Newington),
Part (a) only — D. Crocker {Sydney Boys' High), M. Diamond (Hollywood Senior
High W.A.), S. Hood (James Ruse Ag. High).

1225 If a+ b + ¢ = 0, simplify

b—cy c—a 4 a—by a b c
( a i b u c '(b—c+c-—a+a—b)'

Answer: The expression simplifies down to the constant value 9 (assuming no two
of a, b, ¢, are equal, when it is undefined). This can be straightforwardly, if
somewhat tediously, shown by replacing ¢ by —a—b everywhere. When each
factor is brought to a common denominator, the numerator of the first is equal to
the denominator of the second (or -its negative) and the numerator of the second
is equal to 9 times (or —9 times) the denominator of the first.
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Alternatively, make use of the identity
a®+b3 +c3 —3abc=(a+b+c)(a? + b2 + 2 — ab — bc — ca)
which, since a+b + ¢ =0, yields
a® + b3 +¢3 = 3abc. (1)
Also observe that
a’(b+c)+b%(c+a) +c2(a+b) = —ad —b3 — ¢ = —3ape. (2)
The first factor is A/B where B = abc and
A = be(b—c) + calc—a) + abla—b) = b2¢ — be? + c2a — ca? + a2b — gh?
= — (a—b)(b—c)(c—a)
The second factor is C/D where D = {b—c)(c—a){a—b) = —A and
C = a{c—a)(a—b) + b(a—b)(b—c) + c(b—c){c—a)
=—a% — b3 —c® +a%(b+c) +b2(c +a) +c2(a+b) — 3abc
= —3abc — 3abc — 3abc (using equations (1) and (2))
= —9abc
= —9B
Multiplying the two factors gives the stated result of 9.
Successful Solvers: J. Burnett (James Ruse Ag. High), D. Crocker (Sydney
Boys’ High), S. Hood (James Ruse Ag. High), C. Sparks (Newington).

Open

0226 The houses on the same side of the street as Tom'’s house are numbered 1,
3, 5, ... {with no odd number left out). The sum of the house numbers from
Tom'’s to the end of the street is the same in both directions. If his house has a
3-digit number, what is it?

Answer: Let Tom’s house number be x and let the largest house number on his
side of the street be 2y—1. Now 1 +3+6+. ..+ x=(X")2 andx+ (x+2) +. ..
(2y—1) =y? — (X7)2,

Equating these yields
2% — %% = 1. (1)
From the identity 2(2x, + 3y,)? — (3x, + 4y, )? = 2y,? — x,2 we observe
immediately that if x = Xy, Y =Y, isasolution of (1), so is
x=3x; +4y,,y=2x, + 3y, (2)
Starting with the obvious solution x=1, y= 1, successive applications of (2)
yields the following set of solutions of (1) in pairs of positive integers
(x,y)=(1,1); (7,5); (41,29); (239,169); (1393,985) and so on. (3)
We have found one solution having a 3 digit value of x, viz. x = 239. We are now
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confident that Tom's house number is 239 and the largest house number on his
side of the street (2y—1) is 337.

To show that this is the only solution of the puzzle, we need to prove that all
solutions of (1) in pairs of positive integers are contained in the list (3).

Suppose on the contrary, that there is a solution (X,Y) of (1) between the nth
and (n+1)th pairs in the list (3), i.e. x, < X<x_,., v, <Y<y _,,.

We ask now “ls there a smaller solution (X,,Y,} which upon applying the
formula (2) yields (X,Y)?"" i.e. we attempt to solve 3X, + 4Y, =X, 2X, +3Y, =
Y for X, and Y.

This gives easily X, = 3X—4Y, Y, =—-2X +3Y. Itis clear that this solution of
(1) in positive integers lies between (x__,, vy, _,) and (x_,y_) (since application
of (2) to (X,,Y,) vields a solution in the next interval). It follows that if there is
any solution of (1) not included already in the list (3), there must be such a
solution between (1,1) and (7,5). One has only to try x = 2,3,4,5 and 6 in turn to
rule out this possibiilty.

Note: The above involves solving the equation (1} — which is known as Pell’s
equation — for integers x,y. The following is an alternative answer making use of
Pythagorean triples {see Vol. 7 No. 3, or ask your teacher to work them out for
you).

Let Tom’s house number be 2m + 1 and let the largest house number on his
side of the street be 2n + 1.

Now 1+3+5+...+2m+ 1N =(m+ 12 and 2m+ 1+ 2m+3) +...+
(2n+1)=(n+ 1)2—m?2.

Equating these yields m? + (m + 1)2 = (n + 1)? (1)
Thus m, m+1, n+1 form a Pythagorean triple and so we can find an expression for
them. If m is even, there are positive integers a,b such that

m = 2ab, m+ 1 = a%—p? (2)
where a—b is odd, and so we can write a—b = 2z + 1 for positive integer z.
Substituting in (2), wegetm=2blb+2z+1)and (2z+ 1)(2b+2z+1)=m+ 1=
2bb+2z+ 1)+ 1.
Simplifying,

2z{z + 1) = b? (3)

But b < a and so 8z(z + 1) = 4b? < 4ab = 2m < 1000 (since Tom’s number has 3
digits) i.e. z < 11. The only numbers less than 11 which can replace z in equation
(3) arez=1andz=8, givingb=2,a=5 m=20,2m+1=41and b =2, a= 29,
m = 696, 2m + 1 = 1393, the first being too small and the second being too large
for Tom's number.
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If m is odd, there are positive in‘tegers a,b such that

=a2—b%, m+1 = 2ab (2)
Doing the same algebra as before we get
22 + (z+1)2 = b? (3)’

with z < 11 again. Either repeating the argument or checking the numbers less
than 11 we get as the only answer z=3, b =05, a = 12, m = 119, and so Tom'’s
number is 239.

Successful Solvers: J. Burnett (James Ruse Ag. High), D. Crocker {Sydney
Boys’ High), M. Diamond (Hollywood Senior High W.A.), A. Fekete {Sydney
Grammar) — by computer, A. Oliviero (Newington), D. Powers (Fort Street Boys’
High), R. Casley (Gosford High).

0227 Prove that for all positive integers, n,

24/(2n) ~  2.46....2n 2./(2n)
Answer: Set x = L3:5...(20-1)  where n> 2
Theni = (248..{20-2hy9n =4n.}.¢ .§...3220).
< b3 2

Since each of the factors inside the round brackets has been slightly increased by
adding one to both numerator and denominator.

ie. % < 4nx whence x2 > 4‘—n and x >

2J(2 )

To prove the second inequality

1 = 2 4 6 2n—2 4 1¢3 b 2n—3 2n—1
—)E_§.(3.7....2—B—_T).2n>§-2n.§(z.6... ).

where we have not only decreased each factor within the round brackets but also
introduced an extra factor less than one.

1 S 4 2 3 /3
Hence 1 > 3.2n.x, X° < g3z and X <5555

If n = 1, the above working is meaningless (there are no terms left inside the
round brackets) but it is easy to check that
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3;2 - 3
2./(2.1) 2 x<ﬁ("ﬁ)

Successful Solvers: J. Burnett (James Ruse Ag. High), D. Crocker (Sydney
Boys’ High) — not quite complete, R. Kuhn (Sydney Grammar) — partly, D.
Powers (Fort Street Boys’ High).

0228 The radius of the inscribed circle of a triangle is 4 and the segments into
which one side is divided by the point of contact are 6 and 8 units long. Find the
lengths of the other two sides.

Answer: Using the figure Bl = /(42 + 82) = 44/5 and so
sin B=sin 28 =2sing.cosp

= 2(4/44/5) . (8/4+/5)

=4/5
Similarly, sin C = sin 2y = 12/13.
Applying the sine rule to triangle ABC
(b sin C=c sin B)

(6+x).13 = (8+x).¢
The solution of this is x = 7, so that b
the sides AB and AC are of lengths
15 and 13 respectively.
Successful Solvers: C. Bonkowsky (Kogarah High), J. Burnett (James Ruse Ag.

High), D. Crocker (Sydney Boys’ High), M. Diamond (Hollywood Senior High
W.A.), J. Holten (East Hills Boys' High), R. Kuhn (Sydney Grammar), A. Oliviero

(Newington), D. Powers (Fort Street Boys’ High), C. Sparks (Newington), R.
Casley (Gosford High).

0229 Two identical circular cylinders with unit radius have axes which intersect
at right angles. Find the volume of the region inside both cylinders.

Answer: The diagram shows one-eighth of the region. The front face DQABR is
part of the surface of one of the cylinders, radius 1, axis Oy. This cylinder cuts
the xOz plane in the curve AQD, a quadrant of the unit circle centre O, whose
equation in this plane is x2 + z2 = 1. Similarly, the other cylinder, with axis Ox,
cuts the zOy plane in the arc DSC whose equation is y? + 22 = 1,

A Plane parallel to xOy cuts this region in a square cross section (e.g.
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from the equations obtained to be v/(1—22). Hence PQRS is a square of area
(1—22). The volume, §V, of a very thin slice of the region diagrammed is then
given by 8§V = (1—2z2) 6z, where &z is the thickness of the slice. The error in this
approximation becomes negligible as 5z approaches zero. Hence the total volume
V, the sum of all slices if a large number of such planes are drawn, is given by

1
W= [ l-sfigs = [padz8] " ‘=2
{( z’)dz = [z -3 ]z=o 5

The required answer is eight times the volume of the diagrammed region (note
that the full region is symmetric about all the planes xOy, yOz, xOz); namely 139.

Successful Solvers: R. Casley {Gosford High), D. Crocker (Sydney Boys’ High),
M. Diamond (Hollywood Senior High W.A.), D. Powers (Fort Street Boys’ High),
R. Kuhn {Sydney Grammer) gave an excellent solution, including several more
difficult results e.g., the volume common to 3 intersecting cylinders mutually at
right angles.

0230 A game for two players involves a heap of matches. The first player, A, may
pick up any positive number of matches, so long as at least one is left. Thereafter
the players move alternately, a move consisting in picking up any positive number
of matches not exceeding twice the number picked up by the opponent’s move
just completed. For example, if at some stage A picks up 3 matches, B may pick
up 1,2, 3, 4,5, or 6 matches for his next play. The winner is the player who picks
up the last match. If there are initially 60 matches in the heap, the first player can
force a win. How?
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Answer: {a) Preliminaries: For later use let Fn be the nth number in the Fibonacci
sequence 1,2,3,5,8,13,21,34,55,69 . . . where each new number is the sum of the
preceding 2, i.e.

F oo = F %F _4 forn>2 (1)
Observe that '
1+, #Fy + B feniftpd s = Ry (2)
and that
THF, +F +Fg+. . Fyp = Farn g (3)

To prove (2), note that 1 + F, = F,; now use (1} repeatedly, replacing the first
two terms of the sum by a single term. A similar method obviously suffices to
prove (3). It follows immediately that any whole number R less than F_ can be
written uniquely as

R=F _,+F __+...+F

- +X where 1< X<F

{s=0,1,...)
(4)
[For example, take r = 7, F_= 21. If R< 13, R=Xwhere X< F . f14<R<
18, R=13+ X = F; + Xwhere 1 < X< B, IfR=190r20,R=13+5+ X
where X =1 or 2,and X< F,.]
Finally using (1) we can show that
Fu i @ddio s (5)

(b) Solution of Problem: We claim that if the number of matches N initially in
the heap is a Fibonacci number, i.e. N = Fn {n > 1), then B can force a win with
correct play. Otherwise A can force a win. This can be proved by induction:—
First of all, if N is small, the claim can easily be checked by experiment. Suppose
it is true whenever the number of matches is at most F, for some k, and consider
any N in the interval F, <N<F, ,,.SetN=F_+ Rwhere 1< R< F._ - Using
(4), we may divide the pile of matches into smaller healps H,, H;, H,, ... .
H g containing respectively F , F _,, Fe_ar:: .Fk_:,sand X matches where X
<F i _os_2- A’s winning strategy consists in taking all X matches in heap H_, ,.
Since, in view of (5), B cannot remove all of the heap H_ on his next move, and
since H_ contains F, _,, matches, by the induction hypothe5|s A can so play that
on some later move he takes the last match in H_. Similarly, A can play so as to
take the last match of H__ ,, thenof H__,, H _ ;. . and eventually of H,,.

[Of course, it is irrelevant that B does not have to take the matches from any
particular smaller heap. A can rearrange them each time before he moves if he so
wishes.]

We complete our inductive proof of the above claim by considering the case N =
Fo,q (=F, + F_,). We have to show that B can force a win. If A takes a

number of matches Y > F,__,, B can win immediately by taking all the others.

r—1 r—2s+1 r—2s—1
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However, if Y < F,__, the number of matches left is between F, and F, , , and B
can win by adopting the strategy recommended above for A. [For reasons of
space, we will omit the proof that the number X which he must remove never
exceeds 2Y. It is not very difficult to show using (2) (or (3)) and (4} above.]

For example, if there are 60 = 55 + 5 matches initially in the heap, A can win
by taking 5 matches on his first move. Note that 556 =34 + 13+ 5+ 2 + 1 and
that B cannot choose more than 10 matches on his first move. Suppose, by way
of example, he chooses Y matches where 3 < Y < 8, leaving 34 + 13 + X matches,
where 1 < X < 5. A answers by removing X matches leaving 34 + 13 matches.
Similarly by adopting the strategy outlined, A can play so as to capture the last of
the next 13 matches leaving 34 matches. If B resists without unnecessarily
surrendering by allowing A to go out on the next move, he will at later stages be
confronted with a heap of size 21, 13, 8, 5, and finally 3. B can now take either 1
or 2 matches, and then A removes the rest.

Successful Solvers: R. Casley (Gosford High) — correct method but some
errors, M. Diamond (Hollywood Senior High W.A.), A. Fekete (Sydney Grammar)
— see also his letter in this issue, A. Oliviero (Newington), D. Powers (Fort Street
Boys’ High) — right idea for an attack on the problem but errors occurred in
constructing his sequence of winning plays, R. Kuhn {Sydney Grammar) correctly
announced that the game was a win for the first player unless the number of
matches was a Fibonacci number. | was unable to follow his explanation as to
why this was so.

% ot %

HIAWATHA'S THEOREM (from our first issue)

Three Navaho women sit side by side on the ground. The first woman, who is
sitting on a goatskin, has a son who weighs 140 pounds. The second woman, who
is sitting on a deerskin, has a son who weighs 160 pounds. The third woman, who
weighs 300 pounds, is sitting on a hippopotamus skin. What famous geometric
theorem does this symbolize? (Answer on page 32)
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TESSELLATIONS

A tessellation is formed when a shape or shapes are repeated so that they
would eventually cover the entire plane. Tessellations are sometimes referred to as
‘tiling patterns’.

The regular tessellations are formed by repetition of a regular polygon. There
are only three of these regular tessellations and they are shown below.

The semi-regular tessellations are formed by regular polygons, so that the
polygons surrounding any vertex are identical with those surrounding any other
vertex. There exists only eight semi-regular tessellations and you will find these
on the following pages and in Parabola Vol. 9 No. 3.

Squares Hexagons Equilateral triangles

/\ A# VAVA#A
V#VA

VV¢ VAN
ivanvivav.SlLv
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MARKET RESEARCH (from our first issue)

Two men went into a hardware store and enquired the price of certain articles.
“Fourpence each,” said the shapkeeper. “‘I’ll take seventy seven,” said the first
man, paying the shopkeeper eightpence. “'I’ll take one hundred and eight. Here is
one shilling,”” said the second man. What did they buy? (Answer on page 32)
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Activity
How many of ten pentominoes can be used to tessellate. Prove that you can
tessellate using any quadrilateral, and hence using any triangle.

ANSWERS

Hiawatha’s Theorem: “The squaw on the hippopotamus is equal to the sons of
the squaws on the other two hides.”” (Pythagoras)

Market Research: The men bought numbers for their houses, 77 requiring two
figures at fourpence each, and 108 requiring three figures at fourpence each.
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