Parabola Volume 16, Issue 1 (1980)

PROBLEM 415 RE-SOLVED

Thi_s rather tricky problem appeared in Volume 15, Number 1:

Thirty-two counters are placed on a chess-board so that there are four in every row and four in
zvery column. Show that it is always possible to select eight of them so that there is one of the
zight in each row and one in each column.

The solution in Volume 15, Number 3, was short and sweet and, correspondingly, unimotivated.
Here Is a less ad hoc solution, illustrating the usefulness of an appeal to graph theory.

Consider Figure 1 which shows two sets of points labelled 1 to 8 and 1’ to 8" and connected by
lines. A line represents a counter and we draw a line from point i in the first set to peint j’ in the
second exactly when there is a counter in the square {i,j} of the chess-board. Since there are exact-
ty four counters in every row and every column of the chess-board, we have exactly four lines
meeting at svery point in both sets. We wish to show that, however these lines happen to be ar-
ranged, we can find eight of them which pair off the points in the two sets. Now we can relabel
the points in both sets as we choose, so we are trying to show that, after a suitable relabelling,
there is a set of eight lines connecting i in the first set with i’ in the second, as in Figure 2.
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Suppose wa have succeeded in relabelling the points so that i is connected to i' for | =
i, 2,3,..., kwith k < 8. (See Figure 3.) We wish to show that the labelling can be extended,
perhaps altering the points already relabelled, so that k +1 points are paired off in the two sets. It
wilt follow that the number of points paired off can eventually be increased to 8, and the problem
il be solvad.

Choose any (+ 1)th point in the first set, !f it is connected to one of the 8 -k points left over in
the second set, we can relabel that point (k+ 1) and owr task is accomplished. In fact, we cun
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finish off in this way by choosing one of the unused points in the first set as the (k + 1)-th point
unless all lines from the points k + 1,k+2,..., 8are connected to points j" with j < k. In this case,
it follows that all lines from the points (k + 1V, (k+2),.. ., 8 must run to points j with j < k.
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Suppose we are in the unfavourable case just described. The paint k + 1 is connected to four of
the points 1, 2, . . k’ and the point {k + 1) is connected to four of the points 1, 2,. . ., k. Since
k <7, we can find some i so that k | 1 is connected to i and (k + 1)’ s connected to i. (See Figure
4.} But now if we interchange the labels i and (k + 1Y, we have achieved our goal.

Now you may be wondering what all this is about. If S0, read on. Since the language of
counters and chess-boards does not lend itself readily to dramatic insights, let us re-examine Figure
1 in somewhat more colourful terms. Let us call the points 1 to 8 men and the points 1’ 10 8’
women; the lines from the ith man lead to the women he is willing to marry. (It is possible that
this interpretation is just a little dated.) The sixty-four million doliar question is whether every man
can be married off to a woman on his list of desirable partners. In more prosaic terms, this
amounts to finding eight lines in Figure 1 which pair off the points, so it is exactly the same prob-
lern as before. Suppose all the marriages can be arranged”as required. If we take any k lists of
desirable partners, they must contain at least k different names between themn. (For, if they didn't,
we would have k men nominating fewer than k partners and there would be no way of satisfying

all of them.) It is rather surprising that this obvious condition is all we need in order to solve the
marriage problem.

The marriage theorem. Consider a set of men and a set of women. Each rman makes a list of
the women he is willing to marry. Then, each man can be married to a worman on his list if and
only if _

(") for every value of k, any k lists contain at least k different names between them,
- Let us see how the marsiage theorem solves the problem of the counters an the chess-board.
Here, we have eight men and eight women, each man lists exactly four women he is willing to
many and each woman appears on exactly four lists. If we take any k lists, we get altogether 4k
names, some of which may be repeated, but since no name can appear more than four times,
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there must be at least k different names. Thus our condition (*) is satisfied and we can find a pair-
ing which solves the original problem,.

The marriage theorem is often useful in matching problems. Here is an example which is a slight
twist on the problem considered above: 65 newspaper reporters each cover one sport and one
foreign country in such a way that each of 13 sports has 5 reporters and each of 5 countries has
13 reporters. Show that it is possible to staff 5 newspapers each with 13 reporters so that each
sport and each country is covered by each newspaper. Do the numbers here have any
significance? What about the numbers in the chess-board problem? The solution of the chess-
board problem which we gave above is essentially a specialisation of the proof of the marriage
theorem to the particular case with which we were concerned. Perhaps you can unspecialise it
again. (The last step relating to Figure 4 is the only part that needs re-thinking, but this is a little
tricky. The condition (*) has to be used to obtain the (k + 1)-th pairing, replacing the happy acci-
dentthat4+4 > 7))

A NICE INTEGRAL

3 | lice)? dlice} = icecube + ¢ = ice-berg

— 1. Woodhouse, Marsden High Schoaol.

COMMON SENSE

For integers a and b, the symbol {a,b} denotes the greatest common divisor of a and b, that is
the largest integer which divides both a and b. (For example,(14,16) = 1 and (28,36) = 4.) The
problems that follow ask you to simplify some horrendous expressions involving greatest commaon
divisors. Hint: the problems have an artistic solution {which will be revealed in the next issue).

{1}  Show that (a/la,c), bfib,c)) = (a,b)/(a,b,c).
{2)  Simplify (a/fa,b,c), bl(b,c)).
(3} Simplify (alb,c,d)/(a,c) (a,d), bib,c,d)/(b,c) (b,d)).

— H. Nayna, Year 3, University of New South Wales
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THE ETERNAL TRIANGLE (CONTINUED FROM PAGE 12)

The dénouement
Let ABC be a triangle with sides BC = a, CA = b and AB = c, Measure off distances AS =
o, BV = f and CY = v along AB, BC and CA and distances AT = —o, BW = —~Band CZ =
~v along AC, BA and CB, as described earlier. (See Figure 5.) | assert that the lines ST, VW and
YZ are concurrent if and only if
ax + b + ¢y = 0. (3)

(Note that this includes David McGrath'’s theorem because the values of «, 8 and ¥ given in {2)
satisfy our equation (3).) ‘ w
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Now let us prove that (3) is satisfied if and only if our three lines are concurrent. Consider Figure
6 in which we have drawn SD parallel to AC and WD paraltel to BC. Then ST bisects the angle
DSW and WV bisects the angle SWD and these two bisectors meet at the incentre X of triangle
SWD. Moreover, YZ is parallel to the bisector of the angle WDS. f we use again the fact that the
angle bisectors of a triangle are concurrent, we see that YZ goes through X if and only if YZ ac-
tually is the bisector of angle WDS, as shown in Figure 6. So all we have to do to finish things off
is to calculate the length of CY or CZ in Figure 6. We can do this with the aid of a little
trigonometry. Our calculations are based on Figure 6 where o < 0 and B.y > 0; only minor sign
changes are required to deal with other possibilities. The perpendicular distance between AC and
SD is —a sin A (remember that « is negative), so

DY = —« sin Alsin %C.
Similarly, DZ = f sin B/sin %C,
S0 YZ = —lasin A + 8 sin B)/sin %C.
But YZ is the base of the isosceles triangle CYZ with base angles % C, so
vy = CY = —(asin A + 8 sin B}/2 sin %C cos %C = —{« sin A + 8 sin B)/sin C,

that is asinA + BsinB + ysinC = 0. (4)
Finally, to get (3), we use the fact that the area of the triangle ABC is

A\ (say) = %besin A = lcasin B = %ab sin C,

and this enables us to eliminate the sines in (4). This completes the proof.
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