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451. A prism with pentagons Al1) A(2) A(3) Ald) A(5) and B(1) B(2) B(3) B(4) B{5) as top and bot-
tom faces is given. Each side of the two pentagons and each of the line segments A() BYj), for all

452. Given a plane, a point P in the plane and a point Q not in the plane, find all points R in the
plane such that the ratio (QP + PR)/QR is 8 maximum.

453. Find all real numbers & for which there exist non-negative real numbers x(1), x(2), x(3), x(4)
and x{b) satisfying the equations

5 5 5
E kxik) = a, I k{k) = a2, ¥ KkSx(k) = a*
k=1 k=1 k=1

464. Let A and E be opposite vertices of a regular octagon, A frog starts jumping at vertex A.
From any vertex of the Octagon except E, it may jump to either of the two adjacent vertices. When
it reaches vertex E, the frog stops and stays there. Let aln) be the number of distinct paths of ex-
actly n jumps ending at E.

Prove that a{(2n —1) = 0 and a2n) = {2420 ~ (2 V2P V2, forn = 1,2 8....

(A path of n jumps is a sequence of vertices (P(0), P(1), .. P{n)) such that
i) PlO) = A, P(n) = E,
iy Pli) # Efor0<j< n—1, and
(i) Pli) and Pli + 1) are adjacent for 0 <i < n-1.)

SOLUTIONS TO PROBLEMS FROM VOLUME 15, NUMBER 2

417, letaand b be integers. Show that 10a + b is a multiple of 7 if and only if a—2b is also.

Selutio‘n.

Note that
' 10a + b = 10(a~2b) + 21b (1)
and 8 - 2b = -—-2(10a+b) + 21a. {2)

H 7 divides a - 2b, then both terms on the right side of (1) are multiples of 7, whence 10a+b is
also. Similarly, from (2), if 10a+bisa multiple of 7, so is a - 2b. :

~ Variations on the above were supplied by A. Choy (Trinity Grammar), D. Everett {Kotara High
School), P. Rider (St. Leo’s College), K. Svendsen (Busby High Schaol), S. Tolhurst (Springwood
High School), J. Tually (Sydney Grammar), 5.5. Wadhwa (Ashfield Boys’ High School), R. Wilsor:
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(The King's School) and 0. Wright (Davidson High School).

This problem is the basis of a rather curious test for divisibility by 7 discovered by A. Zbikovski,
& Russian, in 1861. To see if a number is divisible by 7, remove the last digit, double it, subtract it
from the truncated original number and continue doing this until only one digit remains. The
original number is divisible by 7 if and only if the final digitis 0 or 7. For example, is 123456 divisi-
ble by 7?7
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Since -6 isn’t divisible by 7, neither is 123456. Can you see why this works? We do not claim it
is quicker than dividing the original number by 7, only more interesting.

418. Two classes organised a party. To meet the expenses, each pupil of class A paid $5 and
each pupil of class B paid $3. If the pupils of class A had paid all the expenses, they would have
paid $k each. At a second similar event, the pupils of class A paid $4 each and those of class B
paid $6 each, and the total sum was the same as if each pupil in class B had paid $i. Find k.
Which class had more pupils?

Solution.
Let & and b be the numbers of pupils in classes A and B respectively. From the information cor-
cerning the first party, ba + 3b = ka, that is

{5-kla + 3b

i

0. : 1)
Similarly, from the second event, |

4a + (6-kb = 0, (2}
From {1} and (2),

{5-Kk)/3 = 4/(6-k),

both ratios being equal 1o — b/a. This gives k?— 11k + 18 = 0, which has as solutions k = 2 and
k = 9. However, k = 2 cannot be relevant to the prablem since it vields bla = —1, an obvicus
impossibility. Hence k = 9 and bla = 4/3 so that class B has more pupils than class A.

This problem was solved by A. Choy {Trinity Grammar), K. Lim {(St. ignatius’ College), P. Rider
{5t. Leo's College), K. Svendsen {Busby High School), S. Tolhurst {Springwood High School), J.

T

Fually (Sydney Grammar), S.S. Wadhwa (Ashfield Boys’ High Scheool), R, Wilson (The King's
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School) and 0. Wright (Davidson High School). J, Tually noticed a quick way 1o deal with equa-
tions {1} and (2): adding the equations gives 9(a + bl = kia+b) whence k = 9, as before. But what
has happened to the solution k = 27

419. | Write on a large blackboard the numbers 1, 2, 3, ..., 1979, Frase any two of the numbers

and replace them by their difference. Repeat this process until only a single number is left on the
board. Prove that this number is even,

Solution.

In each step of the process, the number of odd numbers present either remains unchanged, or
decreases by 2. (The latter possibility occurs if both numbers erased are odd, their difference then
being an even number.) Since the number of odd numbers at the start is % (1 + 1979) = 990, an
sven number, the number of odd numbers on the blackboard remains even throughout the whole

' operation. Thus, when there is only one number left, it cannot be an odd number,
' The above argument was presented very clearly by A. Johnston (ignatius Park College), J. Tually
(Sydney Grammar), S.S. Wadhwa (Ashfield Boys’ High School), and R. Wilson (The King's

School), and quite satisfactorily by K. Lim (St. lgnatius’ College) and K. Svendsen (Busby High
School).

420. King Arthur's knights arrange a tournament. After it is all over, the king notices that to every
two knights, there is a third one who has vanquished both. How many knights (at least) must have
taken part in the tournament?

‘ Solution.
At least 7 knights must have taken part. To show that 6 knights are insufficient, we can argue
as follows. Label any 2 of the knights A and B. Let C be a knight who beat A and B, D be a

A B CDEF & i
A Olojo|1 1|1
B |1 o) o1 lo
111}l loiolols
D i1jo]i l{o|oO
E o]y e
FoLolelo ] i le [
G | O e Y 1ito B
Figure 1 Figure 2
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knight who beat B and C, E be g knight who beat C and D and, finally, F be a knight who beat C
and E. This gives 6 different knights. If there are no more knights, we see that D is the only one

must have been the conqueror of A and F, But now it is impossible to find anyone who beat both
B and E, since B beat A and F and E beat C and D.

On the other hand, the tournament score-card in Figure 1 shows that the requirements can be
met by 7 knights. (For example, row D of the score-card means that D beat A Cand E, and D was_
beaten by B, F and G.) In the rather different form shown in Figure 2, this is a well-known con-
figuration. Figure 2 has 7 points, labelled A to G, and 7 edges, labelled a to g, including the cir-
cular edge ¢, and each pair of edges has a common point. In our problem, we interpret this as
follows. The points B, C, D on the edge a are the knights who beat A and the point C common to
the edges a and b is the knight who beat A and B, and so on. For reasons which we cannot go
into here, Figure 2 is known as the projective plane of order 7. Observe that what we needed to
solve the problem was a configuration of points and lines S0 that every pair of points is joined by a
line and every pair of lines meets in at least one point. Figure 2 is the smallest system with these
properties; it represents a rather peculiar sort of geometry.

421. In the sequence 19796 . -, each digit after 6 is the last digit of the sum of the preceding
four digits. (Thus, the next digitis 1 since 9 + 7 + 9 + § = 31.) Show that ...1979. .. tumns
Up again in the sequence, but that .. . 1980. .. never occurs at all.

Solution from R, Wilson (The King’s School), with additional explanations.
If we take account only of the parity of the successive digits and write O for an odd digit and E
for an even digit, the sequence becomes

OOOOEOOOGEOOOOE....

that is, there are blocks of 4 odd digits separated by a single even digit throughout the sequence,
(This follows since the sum of 4 odd numbers ends in an even digit, and the sum of 3 odd
numbers and an even number ends in an odd digit.) Hence . .1880. . . cannot oceur, since it con-
tains consecutive even digits. '

block of odd digits. But then the even digits at the end must also be the same, and then the
following odd digits as well. Thus the Sequence has begun to cycle. Moreover, the ruie of con-
struction determines uniquely the predecessor of any block of 4 digits. (For example, if
- -x3b661 ... occurs, then x mustbe 7 sincex + 3 + § 4 6 = 1 + 10n for some non-negative
integer n.) Thus the cyclic behaviour of the sequence must extend right back 1o the beginning and,
i particular, 1979 must occur again later in the sequence. .
The first part of the problem was also solved by J. Tually {Sydney Grammar),
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422, The heptagon ABCDEFG is inscribed in a circle lthat is, all of its vertices A, B
the circle) and three of its angles are 120°. Frove that the heptagon has two equal s

Solution.

First observe that, in Figure 1, if angle APB is 120°, then the arc AB is a third of the cir-
cumference of the circle. (Note first that the reflex angle AGE is twice 120°, that is 240°, whence
tho arc APE subtends an angle of 120° at the centre.) It follows that two of the 120° angles in the
heptagon must have been neighbouring angles. For otherwise, as in Figure 2, the arcs AB, BC and
CD would already account for the whole circumference of the circle, so that D must coincide with
A, that is the hepiagon collapses into a hexagon. Thus we conclude that two neighbouring angles
of the heptagon, at the vertices X and Y in Figure 3, must be equal. Now the portion WXYZ of the
heptagon is symmetrical about OM, the perpendicular bisector of XY and consequently the sides
WX and YZ are equal in length.

\ W
/"'_#\\
X
120"
[ i i i e
M O
'B 120°
Y
P : Z
Figure 1 | Figure 2 | Figure 3

Good solutions were received from K. Svendsen (B'usby High School) and S.S. Wadhwa
(Ashfield Boys' High School).

423. Given two intersecting straight lines a and b and a point P on b, show how to construct a
circle whose centre is on b and which passes through P and touches a.

Solution 1 from A. Jenkins {North Sydney Boys’ High School).
In fact, there are two possible circles.

/

i
|
!
\
\
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Draw a line PT perpendicular to b, to intersect a a T. Draw the bisectors of the angles at T, i
ferse §=...; b at O and O°. Then O and O are the centres of the required circles. For example, if M
is th the perpendicular from O to a, then triangles OMT and OPT are congrusnt, so OM
OP, that is T M is tangential to the circla,

n {Busby High School). A. Choy (Trinity Gram-

tor {Woy Woy High School) gave a construg-

8 construction was als

wund a more complicate

tion which works only for special positions o 3%}1 lines a and b.

tion il from 7. Abbsrton {8t. Paul’ ga, Bellambi),
shall calculate where tg ,Q-ui'

ider the circle in the second

15 e & Beelo
ine b by using & ittlg,

and radius v, say, which

.” and touches the line a at M. We it 1o calcdlate the distance 0Q in terms of
n distance PQ and the given &i"gi o between the lines a and b. Now *
PO =r+ 00 and r = 00 ein e,
SO
0Q = POAT + sin a).
This formula gives the centre of one of the circles. The centre of the other circle is at the point O

on b where

)

'Q = PO —~ sin o).

Temin Py

Can you see why?

L]

ngle ABC is given in the %y plane. Now, O is the origin, the point P moves along the
i the point Q is determined so that the triangles ABC and OFQ are similar fthat is,
= angie CAB and angle QPO = angle CBA), Describe the motion of Q as P moves,

The sight hand figure shows two positions of triangle OPQ: triar gle OP'QY is the position in
which P" and Q' both lie on the line x = 1, and triangle OP”Q" is any other position. Since angle

o locvs of @3 o
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0Q"P" = angle OQ'P, it follows that OQ'P'Q" is a cyclic quadrilateral. (In our figure, the opposite
angles 0Q"P" and O0p” are supplementary. In other figures with P’* and p’ on the same side of

Q' on the line x = 1, the equal angles are both subtended by the chord OP”.) Again referiin to
‘the figure, angle Q'Q'p" - angle Q"0P", since both angles are subtended by the chord Qrpr,

w2

and angle Q0P - angle CAB by construction, Thus Q" always lies on the stiaight ling through
Q" making the angle CAB with the ling x - 1. This line is the required locus of Q.

No correct soiutions were received, but .5 Wadhwa {Ashiield Boys' High School} knew that
the locus of Q was 3 straight line.

425. Show that 2 cos x +1 = 4 cos?%x—~1. Find
fim (2'c_!os (x/2) = 112 cos (x/22) — 1) . (2 cos {x/2n) — 1),
1

N— oo
]

Solution from 8.8, Wadhwa (Ashfisid Boys’ High Schoot),
" To prove the identity, note that

2cosx + 1 = 22 cos?tax—1) + 1 = 4 costlex - 1.
Now, to find the limit, observe that the identity gives
' 2008 x + 1 = {2cos %x 1 1)(2 cos %x _ 1),
that is 2¢08 ¥ax — 1 = (2 cos x + 12 cos Yox + 1),
“Similarly, 2c08 Yax - 1 = 2cos Yx + 1)/(2 cos ax 4+ 1),
and, in general,
2 cos (2"} - 1 = {2 cos B2™ § + 112 cos /27y + 1),
From this,

{2 cos (x/2) - M2 cos (%27 ~ 1) . -2 cos (x/27) — 1y

2cos x + ] 2 cos (x/2)

T e ey e e S e rmemena

2cos x/2) + 1 7 cos {/22)

2 cos /2"y 4+ 1

+ 1
=l 2 cos {x/2") + 7

2cos x + 1
2 cos (/2" + 4
~ %2cosx + 1) asn - oo,
428. Find all pairs {m,n) of integers so that x? + X + nand x2 + nx + m both have integer
roots. (For example x2 4 5y 4 6 = x+20+3) and x2 + Bx + 6 = (x+1)Mx+5))

Solution,

First case. Suppose on ot m and nis zero, say m - 0. Since x? i n has two integer roots,
p
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=N must be g perfect Square, that js n = —k? with k = 0,12 ..., This gives the quadratics
X2—k2 = (x4 K)x — k) and x2 — k3 = x(x — k2),

Second Case. Suppose m = n. Since xz 4+ MX + m has two integer foots, m? — 4m =
m-2)2 _ 4 must be a perfect square, In the list of Squares 0, 1, 4, 9, ..., the only two which
differ by 4 are 0 and 4, Hence m2 — 4m. =..9, giving m = ¢, (The solution M = 0is covereq by
the first case.) So here we get the quadratic x2 A+ 4= (x4 23,

Third case. Suppose m = —N. The argument used in the secon Case shows that ng new ex-
amples can appear here,

Fourth and jast case. Suppose neither m Nor n is zero and m » *n, say |m| > In]. Let & ang
B be the integer roots of x2 + mx 4 N, so that

lat + 18] > Ja+ 5] = Iml > In| = o, 8| (1)

It follows that the smaller of |a| ang 18] must be 1, (For if both la| and 18] are greater than or
equal to 2, then lof . [8] > la| + 16, contrary to (1),) Also, oz.and 8 must have the same sign, for
Otherwise | 8| < |af . 18], again contrary to (1). Thus n = o must be 3 Positive integer ang
Im| = lo| + Bl = n + 1,so0m = +(n+1), Then

X2 + mx + n = x24 M+ + p = (xiﬂ(xin)

always hag integer roots, Now we Mmust consider x2 X+ M o= 52 4 oy + (n+1). With the
lower sign, we get x2 + px — n+1) = —1x + (N+1)), which always has integer roots,
However, x2 . X + {n+1) hag integer roots only if nz — 4n+1) = lR=242 < g g a perfect
Square. In the [igt of squares 0,1, 4, 9, ..., the only two which differ by 8 are 1 and 9. Hence
(n-2)2 = 9, vielding n = 5. (The other footn = —1jg ruled out since n is positive,) Thus this
Case yields the Quadratics

X2~ (n+1)x 4 h = (x-1)(x—n), X2+ nx — (n+1) = X~ 1)x + n+1)) = 2.0
and X 4+ 6x + 5 = (x+1)(x+5), X* + Bx 4 § = (x+2)(x+3).
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of hands consisting of kings and queens. Thus there are 18.18 different ways of preparing the 4
hands, and then 4.3.2.1 ways of allocating them to the 4 players. Thus there are 18.18.24 different
deals of this type.

Third case. Suppose one player receives an ace and 3 queens, a second receives a jack and 3
kings, a third receives one ace, one king, one queen and one jack, and the fourth receives 2 aces
and 2 jacks. There are 4 ways of choosing the ace to be included in the first hand and 4 ways of
choosing the queen to be excluded, giving 16 different hands of this type. Similarly, there are 16
different hands of the second type. Having already chosen the first two hands, there remain 3
ways of choosing an ace and 3 ways of choosing a jack for the third hand. This giveé 16.16.9
ways of selecting the 4 hands and, as before, 24 ways of allocating the hands to the 4 players,
yielding a total of 16.16.9.24 deals of this type.

Fourth case. Suppose one player receives 2 aces and 2 jacks, a second receives 2 kings and 2
queens, and the remaining players each receive one ace, one king, one gueen and one jack. There
are 6 ways of selecting the pair of aces, jacks, kings and queens for the first 2 hands. The remain-
ing 2 aces having been dealt, there are 2 different ways of distributing the remaining 2 kings, 2
queens and 2 jacks, and finally 24 ways of giving the prepared hands to the players. This gives
6.6.6.6.2.2.2.24 deals of this type.

Adding the number of deals of the 4 types gives a total of 643,680. (This takes no account of
the order in which each of the 4 players receives the cards in the hand dealt to him.) Since there
are altogether 161/{41)4 = 63,063,000 different deals, the chance that each player receives $16 is
very slightly more than 1%.

K. Svendsen (Busby High School), J. Taylor {(Woy Woy High School) and S.S. Wadhwa
(Ashfield Boys’ High School) both observed the 4 types of deals described above, but did not
count the number of ways in which each type might arise.

428. Let n be an integer whose last digit is 7. Show that some multiple of n has no digit equal to
zero.

Solution.

Although it appears innocent enough, this is a very difficult problem. The solution contains an
idea that is often useful.

Consider the remainders when each of the numbers 10, 102, 103, ..., 10", 10"*! is divided by
n. As there are n+1 numbers in the list, but only n different remainders possible, at least two re-
mainders must be equal; say these are the remainders from 10° and 10' with s < t. The dif-
ference of these two numbers is a multiple of n, that is, n divides 10' —10° = 105 (10" —1).
Since the last digit of n is 7, neither 2 nor 5 is a factor of n, so we deduce that n divides 10" —1.
So 10t -1 is a multiple of n and none of its digits is 0; in fact, 10" —1 = 999...99.

Solvers of earlier problems.

The following contribution was received too late for acknowledgement in the last issue:
K. Svendsen (Busby High School): an impressive solution to problem 416.
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