
ARITHMETIC AND MUSIC IN TWELVE EASY STEPS*

First we must introduce some musical terminology, with apologies
to readers who are already familiar with it. Consider a piano keyboard,
part of which is shown below.

C♯ D♯ F♯ G♯ A♯
D♭ E♭ G♭ A♭ B♭

C D E F G A B C

The white keys are labelled with the first seven letters of the alphabet:
A, B, C, D, E, F, G. After using all of these we start again. (Note above
that A follows G, and that C appears at both the left and right hand
ends of the diagram.) A black key is given the name of the white key
just below it, with a sharp (♯) added; or of the white key just above,
with a flat (♭) added. Thus the leftmost black key in the diagram is
called C♯ or D♭ (pronounced “C sharp”, “D flat”).

The interval from any key to the next is called a semitone. This is
the smallest interval used in most Western music. For example, C –C♯,
G♯ –A, B –C are all semitones. The interval from any key to the next
key of the same name (for example C –C, E♭ –E♭) is called an octave.
Counting five steps up a scale (including the first and last notes) gives
the interval of a fifth, sometimes, for emphasis, called a perfect fifth.
(Musical readers will know that there are other kinds of fifths, but we

* This article is based on a talk given at the Mathematical Association
of NSW Talented Students’ Day held at Sydney University on 20th July
1989, and was published in Parabola, volume 26, issue 1 (1990).
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shall not be concerned with them in this article.) Instances of perfect
fifths are C –G, B–F♯ and G♭ –D♭.

By counting the keys in the figure you can easily find that an oc-
tave contains twelve semitones. In this article I attempt to answer the
question, “Why twelve?” Why are there not, say, eleven, thirteen or
forty one semitones to the octave? I will try to show that there are very
good reasons for having twelve notes in an octave.

I should begin by pointing out that this article is not a historical
one. I am not suggesting that people knew the following theory and
therefore chose twelve semitones to the octave. Rather, I think that
the theory in some sense constitutes a law of nature, and that given
certain musical requirements, the appearance of an octave containing
twelve notes is almost forced – just as you need not know anything
about energy or gravity in order to hurt yourself if you fall downstairs!

Musical sounds are caused by regular vibrations in the air. The
number of vibrations per second causing any particular note is the fre-
quency of that note in units of Hertz (Hz). For example, the modern
standard of orchestral pitch is established by defining the note A above
middle C to have a frequency of exactly 440 Hz – that is, 440 vibrations
per second. It is found by observation (and backed up by psychological
and physiological theories) that when two notes of different pitches are
sounded simultaneously or consecutively, the result is most pleasing to
the ear if the ratio of the frequencies of the pitches is a simple fraction.
The simplest possible fractions are 2

1 and 3
2 , and these correspond to

the intervals of the octave and the perfect fifth respectively. Middle
C, for example, has a frequency of 262 Hz; a perfect fifth above is G
with a frequency of 393 Hz; the octave above middle C is the C with
frequency 524 Hz. The octave and fifth, being the “simplest” intervals,
are fundamental to the music of virtually all cultures.

Now imagine that we start off with a single note and wish to build
intervals on top of it in order to create a system of notes which we can
use for melodies (and possibly harmonies too). In view of what has just
been said, the best intervals to use will be octaves and perfect fifths.
So we can take our starting note and add the note an octave above,
then the note an octave above that, and so on. Returning to the initial
note we construct a second series consisting of the note a fifth higher,
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the note a fifth higher again, and so on. The crucial requirement now
is that these two series should coincide at some point: for then we will
have a coherent system of individual notes rather than an infinite mess.

Time to turn to mathematics! According to the previous paragraph,
we want an exact number of fifths (say p) to equal an exact number of
octaves (say q). Now since the frequency ratio of a fifth is 3

2
, the ratio

of p fifths piled up on top of each other is
(
3
2

)p
; likewise q octaves give

a ratio of 2q . So we want (
3

2

)p

= 2q (1)

for some positive integers p, q. This is the same as

3p

2p
= 2q ,

or
3p = 2p+q ;

but this is impossible as the left hand side is odd and the right hand
side is even. So our two series will never coincide.

Thus the task we have set ourselves is impossible. The best that
we can do is to find p, q such that (1) is very nearly true. To this end
we take the logarithm of each side,

p log 3
2 = q log 2 ,

and rearrange to yield
p

q
=

log 2

log 3
2

. (2)

We know that this equation has no solution, and we want to find good
approximate solutions.

The problem of finding good fractional approximations to a given
number may generally be attacked by the use of continued fractions.
(This technique is most useful when, as in the present case, the number
cannot be represented exactly by a fraction; however the same ideas
can be used to find a fraction with small denominator which is close to
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a “complicated” fraction such as 1234567
2345678 .) A continued fraction is an

expression such as the following:

3 +
1

7 +
1

15 +
1

1

,

where each fraction line extends over the whole of the subsequent part
of the expression. The numbers (in this example) 3, 7, 15, 1 are called
the partial quotients of the continued fraction. We can evaluate such an
expression in the obvious way “from the bottom up”:

3 +
1

7 +
1

15 +
1

1

= 3 +
1

7 +
1

16

= 3 +
16

113
=

355

113
.

However there is also a “top down” method, which apart from being
slightly faster, gives much more information about the continued fraction
(as we shall see). First construct a table

3 7 15 1

0 1

1 0

in which the left hand elements are always 0, 1, 1, 0 as shown, and the
top row consists of the partial quotients of the continued fraction. Now
complete the table: the number to be written in any space equals the
partial quotient above it in the top row, times the number on the left of
the space, plus the next number to the left again. Thus to calculate the
second row we have

3× 1 + 0 = 3 , 7× 3 + 1 = 22 , 15× 22 + 3 = 333 , 1× 333 + 22 = 355 .

Filling in the third row similarly we obtain the complete table

3 7 15 1

0 1 3 22 333 355

1 0 1 7 106 113
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The answer, 355
113 , appears as if from thin air at the end of the second and

third rows! (By looking carefully at the table you may be able to guess
what familiar number this particular example is related to.) In general,
a continued fraction

a0 +
1

a1 + .. .
+

1

an

can be evaluated by completing the table

a0 a1 · · · an

0 1

1 0

to yield

a0 a1 · · · an

0 1 p0 p1 · · · pn

1 0 q0 q1 · · · qn

where
pk = akpk−1 + pk−2 , qk = akqk−1 + qk−2

and to start things off

p−2 = 0 , p−1 = 1 , q−2 = 1 , q−1 = 0 .

Once the table is completed, the value of the continued fraction can be
read off from the end of the second and third rows:

a0 +
1

a1 + .. .
+

1

an

=
pn
qn

.

The intermediate fractions

p0
q0

,
p1
q1

, . . . ,
pn−1

qn−1
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formed from the second and third rows of the table, and also pn/qn
itself, are called the convergents of the continued fraction. Thus the
convergents of 355

113 are 3
1 ,

22
7 , 333

106 and 355
113 itself. The importance of

continued fractions and convergents lies in the following fact: the “best”
fractional approximations (in a certain sense) to a given number are
its convergents. Now let’s return to our musical problem and use this
principle to find fractions which make (2), and therefore (1), true to a
good approximation.

So far we have only found the convergents of a known continued
fraction. Here we want to find the convergents of the number log 2/log 3

2 ,
so we must first calculate its continued fraction. The procedure is a little
tricky in this instance, so let’s do a simpler example first.

Suppose that we wish to write

37

13
= a0 +

1

a1 + · · · .

Now a1 will be a positive integer, therefore at least 1; so 1/(a1 + · · ·)
will be less than 1. This means that 37

13
is equal to an integer a0 plus

something less than 1: thus a0 must be the largest integer not exceeding
37
13 . This is called the integer part of 37

13 , and is denoted by square
brackets. Thus we find

a0 =
[37
13

]
= 2 ,

because 13 goes into 37 twice, but not three times. Hence

37

13
= 2 +

11

13
= 2 +

1

13/11
.

Now we apply the same process to the remainder 13
11 . We find

[
13
11

]
= 1,

so
37

13
= 2 +

1

1 +
2

11

= 2 +
1

1 +
1

11/2

= 2 +
1

1 +
1

5 +
1

2

.

We have found the continued fraction for 37
13
. In summary, the con-

tinued fraction for any number is found by (i) extracting the integer
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part; (ii) writing the remainder as a fraction with numerator 1; and
(iii) repeating (i) and (ii) as often as necessary. Note that if a continued
fraction stops after a finite number of terms the result will be a fraction,
as we saw above. But we know that log 2/log 3

2 cannot be written as
a fraction! Therefore its continued fraction expansion will never stop:
it will have infinitely many terms. (It’s rather like an infinite decimal.)
This will not worry us – we’ll just calculate enough terms to find a
convergent which is accurate enough for our needs.

On to the continued fraction for log 2/log 3
2 . The first difficulty is

to find
[
log 2/log 3

2

]
. This could be done by using a calculator to work

out log 2/log 3
2 and then just dropping the part after the decimal point.

However a neater method is as follows. Let n be a positive integer. Then

n ≤ log 2

log 3
2

⇔ n log 3
2
≤ log 2 ⇔

(
3
2

)n ≤ 2 ⇔ 3n ≤ 2n+1 .

Now
[
log 2/log 3

2

]
is the largest integer n for which n ≤ log 2/log 3

2 ; that
is, the largest integer for which 3n ≤ 2n+1. Here the only choice is n = 1.
So we begin

log 2

log 3
2

= 1 +
log 2− log 3

2

log 3
2

= 1 +
log 4

3

log 3
2

= 1 +
1

log 3
2/log

4
3

. (3)

For the next step we calculate

n ≤ log 3
2

log 4
3

⇔ n log 4
3 ≤ log 3

2

⇔
(
4
3

)n ≤ 3
2

⇔ 2× 4n ≤ 3n+1 .

Again this is true only for n = 1. Thus

log 3
2

log 4
3

= 1 +
log 3

2 − log 4
3

log 4
3

= 1 +
log 9

8

log 4
3

= 1 +
1

log 4
3
/log 9

8

,

and substituting into (3) gives

log 2

log 3
2

= 1 +
1

1 +
1

log 4
3/log

9
8

.
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Repeating the process,

n ≤ log 4
3

log 9
8

⇔ n log 9
8 ≤ log 4

3

⇔
(
9
8

)n ≤ 4
3

⇔ 3× 9n ≤ 4× 8n .

Now this is true for n = 1 and 2; we require the largest possible value
of n, that is, n = 2. As before,

log 4
3

log 9
8

= 2 +
log 4

3 − 2 log 9
8

log 9
8

= 2 +
log 256

243

log 9
8

= 2 +
1

log 9
8/log

256
243

.

I’ll leave you to work out a few more terms if you wish. You can see
that the numbers involved grow rapidly and so the calculations become
more and more time-consuming. I wrote up this procedure on a powerful
computer equipped with special software for dealing with large numbers,
and it took the computer 30 seconds* to calculate only the first seven
terms! The answer this far is

log 2

log 3
2

= 1 +
1

1 +
1

2 +
1

2 +
1

3 +
1

1 +
1

5 + · · ·

.

Once we have the partial quotients it is a much easier job to find the
table of convergents. It begins

1 1 2 2 3 1 5 · · ·
0 1 1 2 5 12 41 53 306 · · ·
1 0 1 1 3 7 24 31 179 · · ·

* This was written in 1989. Nowadays the calculation would be vir-
tually instantaneous!
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Now we can interpret our results in terms of the musical problem.
Recall that the convergents give us approximate solutions p/q to (2),
and this says (compare (1)) that

(3
2

)p

= 2q

approximately; and this means that p perfect fifths approximately equal
q octaves.

Our first convergent is 1
1
. Thus as a first approximation 3

2
= 2, or

one fifth equals one octave. These are obviously terrible approximations!
Never mind – it gets better further on.

The second convergent is 2
1 , which means that two fifths approx-

imately equal one octave, or that C –D is approximately the same as
C –C. This is better than the previous attempt, but still much too crude
to be of any practical use.

The third approximation is that five fifths equal three octaves. If
we start with an F (for no reason except to fit all the notes on one staff),
five fifths look like this:G � � � � � �

G � � � � � �
G � � � � � �I � � �8���������� � � � � � G 4� 4� 4� 4� 4� 4�8����������� �
I � � �8���������� � � � � � G 4� 4� 4� 4� 4� �8����������� �G � 4� � 4� � 4� � � 4� � 4� � �

� � �8���������� � � � � � G 4� 4� 4� 4� 4� �8����������� �

and indeed the top E is just short of three octaves above the bottom F.
If we replace the E by an F we obtain the series of notes F –C –G–D–
A–F:

G � � � � � �
G � � � � � �
G � � � � � �I � � �8���������� � � � � � G 4� 4� 4� 4� 4� 4�8����������� �
I � � �8���������� � � � � � G 4� 4� 4� 4� 4� �8����������� �G � 4� � 4� � 4� � � 4� � 4� � �

� � �8���������� � � � � � G 4� 4� 4� 4� 4� �8����������� �

Reordering these notes and transposing them so that they lie within one
octave we have

G � � � � � �
G � � � � � �
G � � � � � �I � � �8���������� � � � � � G 4� 4� 4� 4� 4� 4�8����������� �
I � � �8���������� � � � � � G 4� 4� 4� 4� 4� �8����������� �G � 4� � 4� � 4� � � 4� � 4� � �

� � �8���������� � � � � � G 4� 4� 4� 4� 4� �8����������� �
9

the pentatonic (five-note) scale F –G–A–C–D–F which is commonly
found in folk music (particularly in Chinese and Japanese, Scottish and
Irish, and African music). Raising the whole scale by a semitone gives
the black keys of the piano. If you play a tune using only the black keys
you should find that it has a “folk music” flavour. Thus we see that the
approximation log 2/log 3

2
= 5

3
leads to satisfactory musical results.

The next approximation is 12
7 . If we start on a (very!) low F and

build twelve fifths on top of it we obtain the series

G � � � � � �
G � � � � � �
G � � � � � �I � � �8���������� � � � � � G 4� 4� 4� 4� 4� 4�8����������� �
I � � �8���������� � � � � � G 4� 4� 4� 4� 4� �8����������� �G � 4� � 4� � 4� � � 4� � 4� � �

� � �8���������� � � � � � G 4� 4� 4� 4� 4� �8����������� �

G � � � � � �
G � � � � � �
G � � � � � �I � � �8���������� � � � � � G 4� 4� 4� 4� 4� 4�8����������� �
I � � �8���������� � � � � � G 4� 4� 4� 4� 4� �8����������� �G � 4� � 4� � 4� � � 4� � 4� � �

� � �8���������� � � � � � G 4� 4� 4� 4� 4� �8����������� �
Here the top E♯ is approximately the same as the F seven octaves higher
than our starting note. As above we can rearrange the notes within the
compass of one octave and replace the E♯ by F

G � � � � � �
G � � � � � �
G � � � � � �I � � �8���������� � � � � � G 4� 4� 4� 4� 4� 4�8����������� �
I � � �8���������� � � � � � G 4� 4� 4� 4� 4� �8����������� �G � 4� � 4� � 4� � � 4� � 4� � �

� � �8���������� � � � � � G 4� 4� 4� 4� 4� �8����������� �

G � � � � � �
G � � � � � �
G � � � � � �I � � �8���������� � � � � � G 4� 4� 4� 4� 4� 4�8����������� �
I � � �8���������� � � � � � G 4� 4� 4� 4� 4� �8����������� �G � 4� � 4� � 4� � � 4� � 4� � �

� � �8���������� � � � � � G 4� 4� 4� 4� 4� �8����������� �to obtain the usual chromatic scale, which corresponds to playing all the
black and white keys of the piano from F to F.

Musical readers will probably have said by now, “But E♯ equals F
exactly. There is no approximation necessary.” Not so! Indeed E♯ and
F are the same note on a piano, but this is only because the tuning
of a piano already incorporates the approximation we are discussing.
Acoustically, the frequency ratio for the interval F –E♯ from the first
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to the last note of the series at the top of page 10 is
(
3
2

)12
, whereas

the ratio from the bottom F to the top F which approximates E♯ is 27.
These ratios are not equal; therefore E♯ does not equal F. In fact none
of the intervals on a piano is correctly in tune, except for the octaves.
This is because instead of concentrating the whole error into one interval
(for example the interval A♯ –F, which as above ought to be A♯ –E♯),
the error is spread equally over all twelve intervals. Thus the frequency
ratio of a fifth in this system (known as “equal temperament”) is the
number r such that

r12 = 27 ;

that is, r = 12
√
128 = 1.4984, which is not quite 3

2
.

Our study of continued fractions would appear to give a satisfactory
answer to the question, “Why are there twelve semitones in an octave?”
We seek a system of notes which will accommodate both fifths and oc-
taves to a high degree of precision (for no system can do so exactly), and
are thus led to a problem of approximation which we solve by contin-
ued fractions. This gives a usable system of five fifths to three octaves;
however, this system is usually considered too limited to provide enough
interesting musical possibilities, so we move on to the next approxima-
tion, which gives us the (nowadays) standard chromatic scale of twelve
notes to the octave.

There is no theoretical reason why we should not use even better
approximations: the next would result in a 41–note scale. However with
such fine divisions of notes the practical problems in performance of the
music become severe. Of course this only applies to human performers –
there is probably no reason why computer music should not be written
with systems of 41 notes, 53, 306 or even more. (Actually the American
composer Harry Partch has written music for human performance using
a 43 note scale. Clearly his system is not based on the principle of build-
ing up fifths and octaves which we have considered, and unfortunately
I have been unable to find out his reasons for choosing 43 notes to the
octave.)

There are many other interesting problems of approximation which
can be solved using continued fractions, and which I may write about in
a future issue of Parabola.

11

David Angell
School of Mathematics
University of New South Wales
Sydney 2052

web.maths.unsw.edu.au/~angell

12


