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ORDER, RANDOMNESS AND CHAOS

Ian Doust

A time series is a sequence of values ry,rq, ra, ..

., wsually representing mecasurements

of some quantity at equal intervals of time. For example, r, might denote the annual
rainfall in Sydney in the n-th year of records, or the exchange rate for the Australian
dollar on day n, or the number of koalas found in a particular arca in the n-th month.
Below are plotted the time series for three systems which I have artificially generated.
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Example (a) clearly has a simple pattern to it, and we would feel quite confident in
predicting the future values of this time series. The other two however, seem to obey no
simple rule. Such random looking time series are common i real world examples, but
until recently it has been thought that there was little hope in being able to predict the
future behaviour of such systems. And indeed often such prediction is impossible. Many
a gambler would like to be able to make predictions about future rolls of a roulette wheel,
but on a fair wheel all one can do is give probabilistic predictions of the relative frequencies
of the various numbers appearing; there is no way of telling what the next number will be.
The data for Example (b) was derived from taking the last two digits from a page in the
Sydney telephone directory - an essentially random process - and unless I tell you where
in the directory I started, there is no way of telling what any of the future numbers will
be. On the other hand the data for Example (¢) was generated by a simple rule, whereby
the value at every point is determined by the value at the previous point. In other words,
there 1s a function f such that, for all n,

Ty = f{,rn)-
At first this seems a little hard to believe, since the graph of the time series appears to be

very complicated. However, to show the difference between the two “random looking™ times
series above, T have plotted below the values of r,,4q against r, for these two examples.
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Figure 2.

As you can see, for Example (b), 2,4, and z,, scem to be totally unrelated, whereas
for Example (c), the points scem to lic on a parabola. By trying to fit such a curve to the
data, you would probably find a function very close to the one that I used to generate the
data:

f(z) = 3.9(z — z?).

In other words
Tt = 3-9(3'» o= 37?;]-

Systems like this one give simple models of population sizes. Although they are rather
too unsophisticated to be accurate models, they do share the basic properties of many
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pupulations that they grow very quickly when thejp sire i small, and die off through
wvercrowding if the population becomes too large,

Now that we know the function which senerates the data for Example (o), jt should
be a simple task to plug n the last point in the tigge series and then perform the aboyve
iteration to forecast the values for as far into the future as we wish, Unf-.wriun:trv];.' things
e not so simple, Let's seart gt the first point oy the tite series and see if Wer can prediey
the values that appear i the graph, The first vadue Lo appears to be about 0.1 Plugging
that into the iteration gives T = 3.%0.1 - 0.01) = .351. Repeating this gives the tige
series shown below. As you can see, jt agrees pretty well with (Jye original Example T
for the first 5 op so points, but soon the TWor time series are behaving very ditferencly, S,
what went wrong? The problen; s that the system that we ape studying is chaotse.
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Figure 3.

Chaos Theory is a new and exciting branel; of mathematics which has many links
to other areas of researcl, Recently, the University of New South Wales hosted g large
Internationa) conference on Chaos Theory which was attended by many of the wajor
researchers in the field, and some of you may have beer lucky enough to attend the public
lectures given by Professors Benoit Mandelbrot and Robert May., Indeed anvone whe
attended Professor May’s talk will recognise much of the mathematios in (his Paper. Sa
what do we mean whau we say that a system is chaotic? Chaotje SVstems are characterised
by two important Properties:

(1) The system is governed by a simple sot of riles;

(1) The behaviour of the svstemn is highly sensitive to e initial conditions of the systen,
It is this Sensitivity to initjal conditions that js causmg the problens shown in Figure Bl
When [ generatod the original example 1 started off with initial valye To - L T01, Whilsg
this is only different from the ‘alue we used the second time by | part in 100, the two (e
SCTIes soon diverge. Even if we luud heen VOIY. YOry aceurate in reading the vilye of ry. the
two paths would haye parted quire rapidly - unless o had chosen the CXact sane vidye,
And even if we did start with exactly the stne value, if we Lngd performed e caleulations
o a different computer, different rounding errors wonldd oventually have caused (e tile
seties caleulated to be quite different from, the original one.

In practice it js usually impossible 1o Know exaetly the value of a cortain HUATILITY, so
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one might be tempted to ask if we have gained anything from Jiscovering the dynamics
(the rules) of the system. As the above graph shows, what we have gained is the ability to
give short tern predictions. Thus we might regard Exanple (¢) as lyving halfwny between
Example (at, which was very regular. and Example (b)) which was random. In our chaotic
sysfent, oiwe we know the rule. and {approximately) the value of ay. we can at least
accurately predice the next few values.

This has had many maportant inplications in other areas of scienee. Previously it had
been thonght that if one knew the equations that controlled the weather and one knew
the present state of the carth's atmosphere aceurately enough, then, given a big enough
computer you could make accurate long term weather predictions, We now know however
that the equations which govern the earth’s atmospherie system are chaotic and o that
there i a theoretical limit to how far ahead such predictions can be made. Even if we fill
the sky with weather satellites and employed all our fastest computers. it 1= impossible to
predict the weather for more that about three weeks ahead. Eventually even the tiniest
crror will be magnified to an extent which mukes any prediction useless. This phenomenon
is often given the rather colourful name of the butterfly offect, because the disturbance
ciused by a butterfly flapping its wings in say. Tokyo, will eventually have an effect on our
weather here in Sydney.

Much of the research in this arca is being done in finding ways of recognising which
svstems are chaotic, or at lenst partly chaotic. Many systems. for example, contain both
chaotic and random (or "noise”) elements. In other words,

Papi = Flle) £ 50

where £, i some ratdon noise cotponent in the reading. Even if the noise component is
quite large, it is often very useful to be able to “explain” at lenst some of the behaviour of
the time series. Other work iz being done on ways of predicting the future of such systems
without explicitly tinding the function ¥

Being able to tell that o system <« chaotic is not always easy at first glanee, Example (a)
above was generated by the rule

T4l = 314‘2"-'- no JLI-I\I

which is very similar to the rule which generated Example (¢). Those of you with computers
(or even progranunable caleulntors) might like to experiment with rules determined by the
funcrions

fal2) = alr — )

for ditferent values of ¢ and with different starting points ry. Iteration procedures like this
are easy to Progrin in most computer languages, and computers are very good at tasks
<uchy as this which involve a large nuber of repetitions of a simnple step. Indecd because
of this. the ntroduction of computers wis a major foree in the stimulation of arcas such
as Chaos Theory which involve iteration.

The interesting behaviour oceurs when i« between 3 and 4. For some values the
time series tends towards a constant. Then as a increases, the system becomes periodie
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of period 2 (like Example (n)). then period 4, then 8. ... aid tinally becomes chaotie,
A little experimentation will enable you to discover the values of ¢ at which this “period
doubling™ takes place. Sometimes this belaviour takes a very long time to settle dowiy,
For example, if « = 3. the system converges towards 2/3, but unless we star very close to
the limit value, it will take a very large mumber of iterations bhefore every @y, is within say
0.0001 of the limit. You might also try some experiments with ditferent types of functions
determining the dynamies of the systen Just pick o function which maps the unit interval
[0. 1] onto itself nud start iterating. Does a pattern form, or is the system chaotic? Oge
function you might try is the tent map

JUr) = 2min . 1 - ),

Chaos Theory challenges the iden which has been prevalent in the sceientitic comnnty
for generations that o simple set of rules generates o siple outeome, Many such svstems
hawve been neglected from seience and mathematics courses heennse they seemed 1o be too
hard to understand or bheennse they did not have clegant solutions. Yer hidden within
the complexitios of these systems there is mueh elegnnee nnd beauty, and many importan
applications. Anyone interested might try to find out about “fractals”, such ns the beantiful
Mandelbrot and Julia sets. That however js another story, one which you tight chase up
in the references below,
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