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RATIONAL POINTS ON A CIRCLE
Peter Brown

Given a circle 22 +y2 = P, centre (0,0) radius ,/p, does the circle always pass through
points whose co-ordinates are rational numbers?

Clearly the circle 22 + y2 = 4 passes through rational points so does z? + y? = 20.
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The circle 22 +y% = 7 however does not pass through any points with rational co-ordinates,
as we shall see later.
A point with rational co-ordinates will be called a rational point. We begin with a

rather surprising theorem.

Theorem 1. Ifz? 4 2 = p has one rational point then it has infinitely many of them.

T (%.,3. ) Proof: Suppose we have a rational point (2g,yp) on z2 +
/_ 7\ y? = p. Draw any line (other than a tangent) from (g, yg)
4 —  which meets the circle at (z,y).
x,4) K_/ . I claim that (z,y) is a rational point if and only if the
gradient of the line is rational.
2 +yt=p

Clearly if the line meets the circle at (z,y) which is a rational point, then the gra-
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dient ¢ is given by ¢ = which is rational since T, ¥, To, Yo are rational numbers by
assumption.

Conversely, suppose t is rational, then the equation of the line is

Y —yo = t(z — zo) (1)
we solve this with
?+yl=p (2)
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to find the intersection point in terms of zg, yo and t.
From (1) y = yo + #(z — 7o) and substituting into (2) we have

2 4+lyp+tz—z)’=p
which ‘reduces’ to
22(1 +12) + z(2yot — 2z0t?) + (¥5 + z3t? — 2zoyot —p) =0

[You can practise your algebra by showing that this is soj.

This equation is & rather formidable quadratic, but we know that one of its roots must
be xp. (Look back to the diagram to see why).

Let the other root be z, then

y2 + 25t — 2oyt — p
1412

(product of the roots)

IIp =

and so, noting that =2 + y3 = p, we have

iy $uf2 = Zygt — Ty

T3 which is rational.

and using (1),
Yo — yot® — 2zt
1+ ¢2

Since ¢ can be chosen as any rational number, there are infinitely many rational points on

which is also rational.

the circle.
Example: On the circle z? + y* = 20, we have the rational point (2,4). Hence with

1
zo = 2,yp = 4 and choosing { as 3 say, then

=
5 ]

T =

4
y=7z
[Check that z? + y* = 20].

Exercise: Find one rational point on 22 4 y? = 29. Using the formulae above, find at least
3 other rational points on the circle.
Perhaps it is the case that every circle z* +y” = p has rational points on it. This is

not true as we shall shortly see. Firstly some ‘new’ ideas. You may already be acquainted
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Take any whole number 5 (e.g. 7), divide it by 4 and look at the remainder.
For example 7+ 4 = 1 rerp 3. We will say that 7 is congruent to 3 modulo 4, which
simply means that we get a remainder of 3 when 7 is divided by 4, and write

7= 3 mod 4.

Using (if Decessary) a calculator, convince yourself of the following congruences

16=2mod 7
128=3 mod 5
10256 = 50 mod 63,

Theorem 2. The circle 22 + y¥® = 7 has no rational points.

Proof. Suppose 2?2 + ¥? = 7 has rational points X, Y. We are aiming to get some sort of
contradiction, which will then prove the theorem.

Since X,Y are fractions we write them as X — E, Y= E where r,s,¢ are integers
with no factor common to all three. * (Note that any two fractions can be made to
have the same denominator).

Hence

r? 42 =752

Now we read the equation modulo 4, so
r? + ¢ = 352 (mod 4)

Every integer is congruent to 0,1,2 or 3 modulo 4, and so we can write down a table of

Squares mod 4, for any integers

Tt s r? 22 p2
000 0 o0 o
1 11 1 a3 3 mod 4
2220 0 ¢
8 33 1 1 1



look now at the different possible values of s.

s =0 mod 4: In this case r? +t* = 0 mod 4, so r, must be congruent to 0 or 2 mod 4.
This will mean that r, s, are all even. This contradict condition *

s =2 mod 4: Once again r,s,t will all be even.

s=1 mod 4: Hence r? +t* =3 mod 4
But this is impossible since from the table above r?+t?=0,10r2mod4

s = 3 mod 4: Once again rZ + t* = 3 mod 4
Each of the possible values of s yields a contradiction and so the theorem is proved.
This result is rather remarkable since for example z? + y* = 8 has infinitely many

rational points, while z2 + y* = 7 has none.

TN

z? +y? = 8 has infinitely many rational points
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2% 4+ y? = T has no rational points

There are in fact many other circles with no rational points. The following theorem
completely analyses the problem. Its proof however is rather difficult but is similar to the

proof of theorem 2.

Theorem 3. Suppose n is a natural number. Write n as nipipy---px where ny is an
integer (possibly 1) and p1,pz2 - - Pk are primes. Then z? + y? = n has rational points if
and only if n can be written in the above form, with none of the primes pi,pz - Pk &€

congruent to 3 mod 4.

Examples:
1) n=12=2%3,s0 2> + y? = n has no rational points.
2) n= 5150 = 5% x 2 x 103 and 103 in prime = 3 mod 4. so z? + y? = 5150 has no
rational points.

3) n=236= 32.2.2, since 2 # 3 mod 4, z? +y? = 36 has (infinitely many) rational points.



