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THE BANACH-TARSKTI PARADOX AND THE
SQUARING OF THE CIRCLE

George Szekeres

Mathematics is generally regarded as one of the few disciplines (some would say the
only discipline) which is built on rock-solid foundations; once a theorem is proved, its
truth cannot be challenged (unless of course the proof turns out to be faulty). Yet math-
ematics sometimes produces baffling paradoxes which wholly defy our intuition. One of
the most remarkable of these paradoxes was discovered some 70 Years ago by two Polish
mathematicians, Stephan Banach and Alfred Tarski. They proved that two solid spheres,
5 of radius 1 and S, of radius 2, can be partitioned into a finite number of subsets,
namely A;, Ay,-.- A, and B,,By,---,B, respectively, so that A, is congruent to By, A,
to By,---, 4, to B,. By partitioning we mean that each point of $ is contained in
exactly one A; and each point of S is contained in exactly one B; - in symbols (if you

prefer)
A,ﬂAJ'—‘{f'fOI‘E-;éJ &ndA]UAEU'”UAn=Sls

B,-l"l.Bj=¢»f0ri#j and B, UBaU---UB, =8,.
By congruent we mean: in the Euclidean sense, namely that for each i, A; can be moved
rigidly into B; (without altering distances between the points of 4;).

Nothing could be further from our intuitive ideas of “truth” than the Banach - Tarski
theorem. Consider the following version of the theorem, which is also true: A mathematical
sphere of gold of radius 1 can be dissected into 5 Pleces so that these 5 pieces can be
reassembled to form two spheres of radius 1 each. An easy way to make a fortune. Yet
neither Banach nor Tarski died particularly wealthy so there must be a catch somewhere,
and there is one. The pieces which appear in the partitions are not just solid chunks of
the sphere but extremely complicated sets of points and if I picked out any point of the
sphere at random it would be next to impossible to tell which of the five sets it belongs to.

It is very difficult to make it understandable how such paradoxical partitions come
about: it is deeply rooted in the way how we regard a set such as the “set of points
of a sphere” as a collection of individual points (elements of the set). It is easy to say

that “let S be the set of points of a circular disc” and then draw egg-shaped diagrams



on a sheet of paper to illustrate properties of intersections, unions etc. But when it
comes to visualizing sets as collections of individual elements our intuition can play tricks.
Mathematical existence is not quite the same as “physical” existence, though perhaps
not quite as different either; just think of the “existence” of elementary particles such as
electrons, photons, neutrions etc.

Banach also showed that in the plane no such paradoxical situation arises: if two
plane figures have congruent partitions (as we want to call for brevity the existence of
finite pairwise congruent partitions of the two figures) then the figures must have the same
area. This discovery of Banach prompted Tarski to pose the following question: do a
cireular disc and a solid square, both of area 1, have congruent partitions? This “squaring
of the circle” has of course nothing to do with the famous problem of the ancient Greeks
who asked whether one can construct, by means of a ruler and compasses alone, a square
whose area is equal to the area of a circle with unit diameter.

Tarski’s problem remained unsolved for almost 70 years — a long time for any math-
ematical problem. Before coming to the quite recent history of the problem, I want to
remind you that the corresponding problem for triangles (and generally for polygons) has
been solved almost 200 years ago. A theorem of Bolyai states that two triangles with
equal area (by triangle here I mean together with its interior, a triangular region) can be
dissected into pairwise congruent polygonal regions. This is not very difficult, though 1t
requires some cleverness. First, it is easy to see that a triangle ABC with base AB, and
a rectangle ABDE with the same base but half the altitude can be dissected in pairwise
congruent pieces. The following figures illustrate the cases when (i) both angles at A and

B are acute, (ii) at A there is a right angle, and (iil) the angle at A is obtuse.
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In all three figures F is the midpoint of AC, G is the midpoint of BC. In figure (i)
CH 1 ED and in figure (ii) BH || AF. (Prove that in each figure the triangles marked by
the same numbers are congruent). From here it is easy to deduce that two triangles with
common base AB and equal altitudes have congruent dissections. (Proof: find a congruent
dissection of both triangles and the common rectangle ABCD, and use the fact that if
two figures 7} and 7, have congruent dissections with a third figure R then also T} and
T; have congruent dissections with each other, This is not entirely obvious but I leave
the proof to the reader). The general case of two triangles with equal areas can be settled
similarly, using the previous fact. Details are again left to the reader.

Does it follow from Bolyai’s theorem that two triangles with equal areas Lave congru-
ent partitions in the sense of Tarski? Not quite. One doesn’t quite know what to do with
corner points in the dissections such as the point H in (i) which corresponds to two points
namely E and D, in the rectangle. I want to show you how it is done, not so much for
completeness sake but because it involves a very ingenious construction. Let me state the
problem in a simplified form which shows up all the difficulties and also throws light on
the types of sets which appear in the Tarski-type partition problems.

On the real number line take the closed interval [0,1], that is the set of numbers
0 <z <1, and the half-closed interval (0,1], that is the set of numbers 0 < z < 1, Can one
split up [0,1] and (0,1] into a finite number of subsets 4,A4;,--- A4, and B,,B,-.--,B,
respectively so that the set B; for each i = 1,2,---,n is obtained from A; by a suitable
translation, that is by adding to the members of 4; a fixed number ¢; ( positive, negative
or 0)7 If you try to find such sets you will probably get the impression that t cannot be
done; the embarrassment is the point 0 in the interval [0,1] which doesn’t seem to fit into
any of the sets A;. Surprisingly, it turns out that not only can the construction be carried
out but actually three sets A; suffice. Here is the construction; its understanding will no
doubt require some concentration on your part.

Take any fixed irrational number between 0 and 1, say o = VvV2-1= 0,414213562- .-,

We now form the sequence of numbers

Px = ka —[ka], k=0,1,2,...
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where [ka], as usual, denotes the integer part of ka (that is, the largest integer less or equal
to ka). The first few terms of the sequence are po = 0, p1 = a = 0.414213562..., p2 =
2a = 0.828427125..., ps = 3a — 1 = 0.242640687..., ps = 4a -1 = 0.656854250 .. ..
The numbers p; are all different (why?). Now place in A, all those px which are less than
1 — a = 0.585786438 ..., in A, all these p; which are between 1 -« and 1 (px can never
be equal to 1 — a or 1. Why?) For instance po, and ps are in A;,ps and py are in Az.
Finally put all the rest of the numbers between 0 and 1 (including 1) into A3. Clearly
A; U Ay U Az = [0,1] is a partition of [0,1] into three pairwise disjoint subsets.

To obtain the corresponding decomposition of (0,1] define B to be the set of all those
pi which are between « and 1, that 1s @ = pi < 1, B, to be the set of all those py which
are strictly between 0 and a, that is 0 < px < @, and B; to be the same as Ay. For
instance py,ps and p4 are in By, ps is in Ba, and po = 0 is in neither of the sets By, Ba, By,
so that B; U By U Bs = (0,1] is a partition of (0,1). All we have to show now is that B, is
a translation of A; and Bs is a translation of Aj.

Suppose px € Aj, that is 0 < px < 1 — a, then adding « to all members of the
inequality, @ < a+ pr < 1. Therefore ka = [ka] 4 pr, add a : (k+1)a = [ka] +ps+a. As
P+ <1,pk41 =prta, p+1 € B, . This shows that if we add a to any number in 4,
we get a number in By, so that the translation of 4; by a is contained in B;. We still have
to show that we get all of By, that is no member of By is missed out by this translation of
A;. The argument is very much the same as before, only we subtract now a from px € By
and show that pg — « is in A;. Very similarly one can prove that Aj is a translation of By
by 1 — a. The interested reader can £ll in the details without much difficulty.

Going back to Tarski’s circle-squaring problem: it has finally been settled last year
by a Hungarian mathematician by the name of Miklos Laczkovich. His answer is: yes, the
cireular dise and the solid square do have congruent partitions, even though the number of
necessary parts is quite formidable, about 10%0 (1 followed by 50 zeros). In fact he proved
a much stronger statement: not only that the shape of the second figure does not matter as
long as its area is the same as the area of the disc, but more surprisingly, in the partitions
of Laczkovich the pieces need not even be rotated but merely translated — a result that

caught almost everyone who worked in the subject by surprise. In the original Banach-
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Tarski proof for the (3-dimensional) sphere rotation of the pieces was quite essential, and
so were in the Bolyai type dissections.

I conclude with a remark which might interest some of our former competitors in
the Mathematical Olympiad: when in 1982 the Australian team was sent to Budapest,
Laczkovich was one of the moderators, and a very good one too. In his student years
he himself was a keen and successful participant in various mathematical competitions.

Perhaps competitions such as the IBM do improve your problem solving skills after all.

% %k koK Kk % K ok %k ok

“Newton could not admit that there was any difference between him and other men,
except in the possession of such habits as ... perseverance and vigilance. When he was
asked how he made his discoveries, he answered, “by always thinking about them;” and at
another time he declared that if he had done anything, it was due to nothing but industry
and patient thought: “I keep the subject of my inquiry constantly before me, and wait till
the first dawning opens gradually, by little and little, into a full and clear light.”

W. Whewell in History of the Inductive Sciences, Book 7, Chapt.2.

“His secretary records that his forgetfulness of his dinner was an excellent thing for
his old housekeeper, who “sometimes found both dinner and supper scarcely tasted of,
which the old woman has very pleasantly and mumpingly gone away with.” On getting
out of bed in the morning, he has been discovered to sit on his bedside for hours without
dressing himself, utterly absorbed in thought.”

James Parton, Sir Isaac Newton.
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