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2 AND ALL THAT

David Angell*

We all know and have used the approximation 7 = 22, It may have occurred to you
to ask why this is a worthwhile value. Why not just use 7 =~ % (that is, 3-1), 3-14, 3-142,
o T

In a previous article I showed how to use the technique of continued fractions to
find the “best” rational approximations to log2/log 2, and hence plausibly to answer the
question, “Why are there just twelve semitones in an octave, and not (say) eleven or
thirteen?” Here we'll look a bit further into the approximation properties of continued
fractions, illustrating these by showing why 22 is in fact a very useful estimate for =. I
won't repeat any of the introductory material on continued fractions, so if you need further
explanation of this please refer to my earlier article.

In contrast to log 2/log 3, where we used a neat (though still fairly laborious) method
of finding the partial quotients, the only way I know to find the continued fraction of  is
by “brute force™: take a decimal approximation, say

= 3.14159265635 ---

and work with this instead of the exact value. Naturally, the more decimal digits of = we
have, the further we will be able to calculate the continued fraction. Clearly [7] = 3, and
so the computation begins

—34(m-3) =34 ——
ARV CED )
By calculator, 1/(w — 3) = 7-06251 33059 - - and so

1

T+('n'13_7)

=3+ ——— (do you notice something already?)

T=3++

[y e

1
=54 -

T+

15+

L
202 4

1+

* David is a pure mathematician at the University of New South Wales. His previous
article, Arithmetic and music in twelve easy steps, appeared in Parabola vol. 26, no. 1.
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after a long calculation. (The result of an even longer calculation is given in problem 2 at
the end in case you would like to play around with it.) So by constructing a table

3 7 15 1 292 1
011 ]3]22] 333 ] 355 | 103993 | 104348
11611 71106 | 113 33102 33215

we find the first six convergents to . The fraction 22 duly makes an appearance, and as I
7 P

wrote in my earlier article, the convergents to a number are (in a sense) the “best” rational
approximations to that number. This shows why 21—2 is, for many purposes, a more useful
approximation than, say, 31

Just how good are convergents as approximations?

Suppose we pick a denominator ¢ at random, and then determine p such that £ is ag
close to 7 as possible. For example, if g = 10 we will find p = 31, since  is between -;—[1,
and ?—g, and closer to the former.* From the diagram

el 4 w 1
q q g

it is clear that the maximum possible discrepancy between Landris |r - E| = 5. If we
assume that 7 is in some sense “randomly placed” among the rational numbers, we could
regard the “average” or “expected” discrepancy as being half of this, that is, |7 — E] = '4]_4'
However for convergents, it is possible to show that

1
] 1
Un+1qy

Pn
n

| -

(+)

where @,y is the next partial quotient in the continued fraction expansion of w. Let’s
look at a few examples of approximating by fractions with given denominator.
(1) If we take E= 3L, the best approximation to r with denominator 10, we find the error
to be
31

I’rr 1n| 4159 4’
which is roughly the same as (in fact a bit worse than) the “expected” error J-. Note
that 3% is not a convergent to .

(2) Choosing the denominator ¢ = 7 and the best possible p, we would “expect”
11

ax7 28

* Of course « is merely a familiar example: the same ideas apply in approximating any
given number.,

11



however, since 22 is a convergent to m, () tells us that
l 22 i 1 1
4| o —_— = ——
T 15x 7% 735

G

= -2?;‘- of the error that we could

Thus as an approximation to m, £ has less than
“reasonably expect”!! To see this in another way,

? =3.14285 ... =w to 2 decimal places.

So 2 is just as close an approximation as 34,

(3) We obtain an even more spectacular example by choosing ¢ = 113. Then the “average”
error is

‘ﬂ L|~  ——
1131 ~ 4 x 113 ~ 452

if p is chosen as well as possible; but in fact

‘ 355 1 1
T—— < = i
113 202 x 1132 3728548

Thus the approximation

355
o 35 59415929903 .-
=113

is accurate to six decimal places; the error is less than @- of that expected!!! It is a
better approximation than 34158 (The estimate =~ 333 was known to the Chinese

mathematician Zu Chongzhi in the fifth century A.D.)

It is clear from () that convergents are good approximations to a number. Indeed,
we have

true error L Pn/qnl
“expected” error  1/4qy
= 4qn|T — .P_r!
fn
4
< A
On41Tn

Since the denominators g, are always increasing, this ratio becomes smaller and smaller
as we move along the sequence of convergents. Moreover, a convergent % will be not
only better than “average”, but a really exceptional approximation, when the next partial
quotient any; is large. This was the case in the examples I chose for (2) and (3) above,
where dn+1 was 15 and 292 respectively.

Convergents are known to be good approximations to a number. However, it might
be that there are other fractions (not convergents) which are also good approximations. It

12



turns out that this is not the case - in other words, convergents are (in a sense} the only
possible good approximations! Consider the relation found above,

true error
[} n
expected” error

r—&n

gn

< 4qn

?

when E: is a convergent to 7. Now determine the best rational approximations 7 ~ E for
9=4n+1,gn+2,.... How long does it take before the ratio of true to average error is
better than for £27 That is, what is the smallest ¢ such that

R .

4q|1r— EJ < 4q,

if p is chosen as well as possible? It can be shown that this does not happen until ¢ = In+1-
In other words, to get a better approximation than some convergent we have to go at least
as far as the next convergent. To take a specific example, the fractions

<

3
0

=

1 32

TR 104 0

el
|
b
r..-.

L

¥ ]

—
=]
-
L]

are no better approximations to m than 22.

As a final illustration we have tabulated for ¢=1,2,...,10 the closest approximation
g- to m; the error in this approximation; and the ratio of actual error to “expected” error.
It can be seen that this ratio is usually fairly close to 1 (exercise: show that it can never
be more than 2), but takes a sudden plunge at the convergent 22,

P true error
q ] T “expected” error
1] 2 | o014 0-6
21 2 | 014 1.1
3 3 | 014 1.7
4 [ £ | onn 1.8
5 [ ¥ | 0058 1.2
6 | ¥ | o025 0-6
7 £ | 00013 0-04
8 | £ | o017 05
9 [ 2 | 0030 1-1
10 | 2| 0042 1.7
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Problems

(1) Use the value #? =~ 9-86960 44011 (accurate to ten decimal places) to show that w2
has a rational approximation with denominator less than 30 and error less than 5%
of the “average” error. (I estimate that if your calculator works with ten significant
digits you will be able to calculate eleven partial quotients accurately, but the twelfth
will be wrong. Unfortunately there will be no particular indication that anything is
amiss ~ this is a problem which can only be resolved with some care.)

(2) Going beyond what was given above, the partial quotients of = begin

§7 060, 00 1 1AL I 1L S D LR, ...

Use these to find some more exceptionally good approximations to .

(3) Construct a table like that above to see what happens near some later convergents.
Take, for example, ¢ = 100,101,...,120.

Another interesting problem is to find a right-angled isosceles triangle with all side
lengths integers.

2 v

If we have such a triangle, Pythagoras' Theorem gives us p? = ¢% + ¢* = 2¢* and hence

2.,
q
However this is impossible. (If you have never seen it proved, look up Parabola vol. 25, no. 2,
p.4 (1989).) So as an alternative problem we could seek right-angled isosceles triangles
with sides as near as possible to integers. This will lead us to find rational approximations
to /2, and as we already know, this is the sort of problem which continued fractions deal
with very well.

First we find the continued fraction of /2. This can be done by first finding a dec-
imal approximation, or with more insight as follows. You have probably learned how to
rationalise the denominator of a fraction involving surds; recall that in finding continued
fractions we wish to rationalise the numerator instead. (In fact we want all the numerators
to be 1.) Thus we compute [\/ﬂ = 1 and then

VZ=1+(v2-1)
(V2-1)(vV2+1)
V2+1

1

YE41
1

+2+{v’§—1) '
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Observe that the most recent remainder, v/2—1, is the same as the previous one. Therefore
from this point the process repeats over and over again:

24+ 1
24—
1

B g

and we can find the first few convergents to /2 :

1]12])2 2 2 2
0|1 f1]3[7]17]41]99
1]0j1j2|5]12]29] 70

Thus our first approximation will be /2 ~ 2, giving the following attempts at a right-
angled isosceles triangle. (If we insist on keeping the sides 2,2, 3 we can either make the
figure not right-angled, or not a triangle!)

4i%i:]2_ ¢£;iii7l
p 1 z
The correct hypotenuse length for sides of length 2 is

V22 = VB = /9 — a little bit = 3 — a little bit

(compare this with the left half of the above diagram). The next convergent to /2 is I
giving the approximate right-angled triangles

|
1
/ 5 5
|
£

in which the correct hypotenuse should be

~!

V2% = V50 = /49 + a little bit = 7 + a little bit .

And so on. ..
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Problems

(4) Using the value V2 = 1.41421 35628 - - - (accurate to ten decimal places), compare the
actual error with the “expected” error for some convergents and some non-convergents
to /2. While the convergents are better approximations than the others, none of them
is as exceptional an approximation as, for example, 7 = 333. Why not?

(5) Show that if the shorter sides of a right-angled triangle are integers in the ratio of
9 : 1, then the hypotenuse cannot be an integer. Find some triangles of this shape in
which the hypotenuse is very nearly an integer.

(6) Find equilateral triangles in which the sides are integers and the altitudes are close to
integers.

(7) Show that if the sides of a cube are integers then the main diagonals (that is, the
diagonals passing through the centre of the cube) are not. Find some integral side
lengths such that the diagonals are very nearly integers. Can you find out anything
about the possibility of making not only the sides and the main diagonals but also
the face diagonals (that is, the lines from corner to corner of each square face of the
cube) close to integers?

Further reading
N.M. Beskin: Fascinating fractions. Mir Publishers, 1986.
C.D. Olds: Continued fractions. Random House, 1963.

L Niven and H.S. Zuckerman: An introduction to the theory of numbers. Wiley,
1972, (more technical)

“When I considered what people generally want in calculating, I found that it always
is a number.

I also observed that every number is composed of units, and tat any number may be
divided into units.

I observed that the numbers which are required in caleulating by Completion and
Reduction are of three kinds, namely, roots, squares and simple numbers relative to neither
root nor square.

A root is any quantity which is to be multiplied by itself, consisting of units, or
numbers ascending, or fractions descending.

A square is the whole amount of the root multiplied by itself.

A simple number is any number which may be pronounced without reference to root
or square.

A number belonging to one of these three classes may be equal to a number of another
class; you may say, for instance, ‘squares are equal to roots’, or ‘squares are equal to

3

numbers’, or ‘roots are equal to numbers’.

from Al-Khwarizmi, The algebra of Mohammed Ben Musa, ed. and translated
F. Rosen, John Murray; quoted in The history of mathematics — a reader, ed. John
Faurel and Jeremy Gray Macmillan Education.
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