SOLUTIONS OF PROBLEMS 805 - 816

Q.805 Solve for x and y:

$$\sqrt{x+y} + \sqrt{x-y} = 5\sqrt{x^2 - y^2}$$

$$\frac{2}{\sqrt{x+y}} - \frac{1}{\sqrt{x-y}} = 1$$

ANSWER Dividing the first equation by $\sqrt{x^2 - y^2} = \sqrt{x + y} \sqrt{x - y}$ gives

$$\frac{1}{\sqrt{x-y}} + \frac{1}{\sqrt{x+y}} = 5.$$

Adding this to the second equation: $\frac{3}{\sqrt{x+y}} = 6$

$$\therefore \frac{1}{\sqrt{x+y}} = 2$$
, and $\frac{1}{\sqrt{x-y}} = 5 - 2 = 3$.

These yield $x + y = \frac{1}{2^2}$; $x - y = \frac{1}{3^2}$; whence on adding $2x = \frac{13}{36}$, $x = \frac{13}{72}$, and on subtracting $2y = \frac{5}{36}$, $y = \frac{5}{72}$.

Thus the only solution is $(x,y) = \left(\frac{13}{72}, \frac{5}{72}\right)$.

Correct Solution: James Choi (Trinity Grammar School)

Q.806

Show how to construct a quadrilateral ABCD, being given the lengths AB and CD, the angle $A\widehat{B}C$, and the angles made by producing both pairs of opposite sides.

ANSWER Refer to figures 1 and 2.

On a straight line QY construct a segment AB of the given length. Using the given angles, β and ϕ , construct lines BX and AX having $\angle ABX = \beta$ and $\angle QAX = \beta + \phi$, intersecting at X.

Using the given angle θ construct P inside $\triangle ABX$ with $\angle PBA = \theta$ and BP equal to the given length of CD.

Through P construct a line parallel to BX intersecting AX at D, and then a line through D parallel to PB intersecting BX at C, and AB produced at Y.

Proof Since BP DC is a parallellogram, CD = BP, the given length, and $\angle DYC = \angle PBA$ (corresponding angles) = θ (the given angle).

Also $\angle AXB = \angle QAX - \angle ABX = (\beta + \phi) - \beta = \phi$ (given).

Obviously AB has been constructed of the given length, and $\angle ABX$ equal to the given angle.

(For the construction to succeed the given quantities must satisfy the relations $\beta + \phi < 180^{\circ}$; $\theta < \beta$; and $CD < \frac{AB\sin(\beta + \phi)}{\sin(\beta + \phi - \theta)}$. The first permits $\triangle ABX$ to be constructed with the correct angles at B and X. The other two permit P to be constructed inside this triangle.)

Correct Solution: J. Choi (Trinity Grammar School)

Q.807 A confirmed clock watcher drew lines on the face of a clock to mark the positions of the two hands. Some time later he noticed that the hands now trisected the angle between the marked lines. In how short a time could this have happened? How soon after 3.00 could one start such an experiment?

Therefore $12 \times \theta^{\circ} + \theta^{\circ} = 360^{\circ} \times n$ (where n is the number of complete revolutions that will have been made by the minute hand when it next reaches the position OB).

The smallest value of θ , corresponding to n=1, is $\theta^{\circ}=\frac{360^{\circ}}{13}$. Since the hour

hand moves 30° per hour it moves through $\frac{360^{\circ}}{13}$ in $\frac{12}{13}$ hour. This is the shortest time that could have elapsed. (= $55\frac{5}{13}$ minutes).

If fig 1(a) applies, the angle between the drawn lines is $3 \times \theta^{\circ} = \frac{3 \times 360^{\circ}}{13}$; if fig 1(b) applies, it is only $\frac{3}{2} \times \frac{360^{\circ}}{13}$. At 3.00pm the minute hand is 90° behind the hour hand. To reach a point $\frac{3}{2} \times \frac{360^{\circ}}{13}$ ahead of the hour hand, since it overtakes at the rate of 330° per hour, will require the elapse of $\frac{\frac{3}{2} \times \frac{360}{13} + 90}{330}$ hours, or of $\frac{(\frac{504}{13} + 90)}{330} \times 60$ minutes.

This is about 23.41 minutes, therefore the experiment could have started at 23.41 minutes past 3.00pm, but not sooner.

Q.808 Let $b_1, b_2, ..., b_n$ be any rearrangement of the positive numbers $a_1, a_2, ..., a_n$. Prove that $\frac{b_1}{a_1} + \frac{b_2}{a_2} + ... + \frac{b_n}{a_n} \ge n$.

ANSWER Let $x_k = \frac{b_k}{a_k}$ $k = 1, 2, \dots, n$.

Q.809

Since the arithmetic mean of the positive numbers $\{x_1, \dots, x_n\}$ is not less than their geometric mean

$$\frac{x_1 + \cdots + x_n}{n} \ge \sqrt[n]{x_1 x_2 \cdots x_n} = \sqrt[n]{\frac{b_1 \cdots b_n}{a_1 \cdots a_n}} = \sqrt[n]{1} = 1.$$

$$\therefore \frac{b_1}{a_1} + \dots + \frac{b_n}{a_n} \ge n.$$

How many different (i.e. non congruent) triangles can be constructed with side lengths in cms a, b, c given that a, b, c are all whole numbers, and $a < b < c \le n$ where n is a given whole number.

ANSWER Let N(c) denote the number of different triangles with longest side c cms and other sides a, b cms where a < b < c, and a, b and c are all whole numbers.

N(c) is the number of points with integer co-ordinates (a,b) inside the triangle BCX in the diagrams in Fig.1.

To see this, observe that since a < b the points must lie above the diagonal AC(x = y). Since b < c they must lie underneath the line BC(y = c).

Since to form a triangle we must have a + b > c they must lie above the diagonal AC (x + y = c).

Since there are equal numbers of integer points in each of the 4 triangles in the diagrams, and there are $(c-1)^2$ integer points inside the square OABC we have $N(c) = \frac{1}{4}[(c-1)^2 - D(c)]$ where D(c) denotes the number of integer points inside the square on the two diagonals OB and AC. There are (c-1) such points on each diagonal, so D(c) = 2(c-1) when c is odd. However, when c is even $(\frac{c}{2}, \frac{c}{2})$ lies on both diagonals, and D(c) = 2(c-1) - 1.

Hence
$$N(c) = \frac{1}{4}[(c-1)^2 - 2(c-1) + 1] = \frac{1}{4}(c-2)^2$$
 when c is even, and $N(c) = \frac{1}{4}[(c-1)^2 - 2(c-1)] = \frac{1}{4}[(c-2)^2 - 1]$ when c is odd.

Now let F(n) denote the number of different scalene triangle with integer sides of which the longest does not exceed n.

$$F(n) = N(1) + N(2) + N(3) + N(4) + \dots + N(n)$$

$$= \frac{1}{4} \sum_{c=1}^{n} (c-2)^2 - k \times \frac{1}{4}$$

where k is the number of odd numbers in $\{1, 2, \dots, n\}$. So $k = \frac{n}{2}$ if n is even, and $\frac{n+1}{2}$ if n is odd.

$$\therefore F(n) = \frac{1}{4} \times 1 + \frac{1}{4} \sum_{m=0}^{n-2} m^2 - \begin{cases} \frac{n}{8} & (n \text{ even}) \\ \frac{n+1}{8} & (n \text{ odd}) \end{cases}.$$

Using the identity $\sum_{m=0}^{N} m^2 = \frac{1}{6}N(N+1)(2N+1)$ (which is not too hard to prove by mathematical induction) we obtain

$$F(n) = \frac{1}{4} + \frac{1}{4}(n-2)(n-1)(2n-3) - \frac{n}{8} - \begin{cases} 0 & (n \text{ even}) \\ \frac{1}{8} & (n \text{ odd}) \end{cases}$$

$$F(n) = \begin{cases} \frac{2n^3 - 9n^2 + 10n}{24} = \frac{n(n-2)(2n-5)}{24} & (n \text{ even}) \\ \frac{2n^3 - 9n^2 + 10n - 3}{24} = \frac{(n-1)(2n-1)(n-3)}{24} & (n \text{ odd}). \end{cases}$$

Q.810 Solve for x the equation

$$\sin(18 + \frac{3x}{2})^0 = 2\sin(54 - \frac{x}{2})^0$$

ANSWER Since $\sin(180 - \theta)^{\circ} = \sin \theta^{\circ}$, we can reformulate the question to read

$$\sin(180 - (18 + \frac{3x}{2}))^{\circ} = 2\sin(54 - \frac{x}{2})^{\circ}$$

 $\sin 3y^{\circ} = 2\sin y^{\circ} \text{ where } y = 54 - \frac{x}{2}$

Since $\sin 3\theta = \sin \theta \cos 2\theta + \cos \theta \sin 2\theta = \sin \theta (1 - 2\sin^2 \theta) + 2\sin \theta \cos^2 \theta$ = $3\sin \theta - 4\sin^3 \theta$

$$\sin 3y = 2\sin y \Leftrightarrow 3\sin y - 4\sin^3 y = 2\sin y$$
$$\Leftrightarrow \sin y(4\sin^2 y - 1) = 0$$

$$\Leftrightarrow \sin y = 0 \text{ or } \sin y = \pm \frac{1}{2}$$

 $\Leftrightarrow y = 180 \times n \text{ or } y = \pm 30 + 180n \text{ (n any integer)}$

 $\Leftrightarrow x = 108 \pm 360n$, or $x = 48 \pm 360n$, or $x = 168 \pm 360n$ where $n = 0, 1, 2, \cdots$

Correct Solution: J. Choi (Trinity Grammar School)

- Q.811 All digits of a whole number x are different, and they are in increasing order. Let S(x) denote the sum of all the whole numbers which can be obtained by rearranging the digits of x (including x itself). Thus, if x = 378, S(x) = 378 + 387 + 738 + 783 + 837 + 873 = 3996. Find all numbers x such that S(x) = 86658.
- ANSWER Let the digits of x be $d_1d_2\cdots d_k$, so $x=d_1\times 10^{k-1}+d_2\times 10^{k-2}+\cdots +d_k$. Of the k! different arrangements of these digits, each d_j occurs (k-1)! times in the 1st place, (k-1)! times in the 2nd place, \cdots , and (k-1)! times in the last place. Therefore when the k! arrangements are added up, the digits in each column add to $(d_1+d_2+\cdots+d_k)\times (k-1)!$

$$\therefore S(x) = (d_1 + d_2 + \dots + d_k) \times (k-1)! \times (10^{k-1} + 10^{k-2} + \dots + 10^1 + 1).$$
If $k \ge 5$, $S(x) \ge (1+2+3+4+5) \times 4! \times 11111 = 3999960$.
If $k \le 3$, $S(x) \le (7+8+9) \times 2! \times 111 = 5328$.

Hence if S(x) = 86658, x must have 4 digits and $86658 = (d_1 + d_2 + d_3 + d_4) \times 3! \times 1111$; whence $d_1 + d_2 + d_3 + d_4 = 13$.

By trial there are only three possible values of x: viz. 1237, or 1246, or 1345.

- Q.812 P(x) is a polynomial with integer coefficients, and n, m are positive whole numbers.
 - Given that (i) 19 > n > m

(ii)
$$P(m) = 0$$
, $P(n) = 39$, $P(19) = 187$

find m and n.

ANSWER Let $P(x) = a_0 + a_1 x + \cdots + a_t x^t$ where a_0, a_1, \cdots, a_t are integers.

Since for each positive integer k

$$c^{k} - d^{k} = (c - d)(c^{k-1} + c^{k-2}d + c^{k-3}d^{2} + \dots + d^{k-1}),$$

it follows that if c, d are any integers, then c - d is a factor of

 $P(c) - P(d) = a_1(c - d) + a_2(c^2 - d^2) + \dots + a_t(c^t - d^t)$. Taking (c, d) = (19, m), then (19, n), then (n, m) we have

19 - m is a factor of $P(19) - P(m) = 187 = 11 \times 17 \cdots (1)$

19 - n is a factor of $P(19) - P(n) = 187 - 39 = 148 \cdots (2)$

n - m is a factor of $P(n) - P(m) = 39 = 3 \times 13 \cdots (3)$

From (1), since 0 < m < n < 19, 19-m = 11, or 17; and from (3), n-m = 1, or 3, or 13.

Since 19-n=(19-m)-(n-m), from (2) the only possibility is 19-m=17, and n-m=13 (because none of 11-1, 11-3, 17-1, or 17-3 is a factor of 148). Hence the only solution is m=2, n=15.

[It is not too difficult to exhibit a polynomial P(x) having all the stated properties.

$$P(x) = (x-2)(2x-27) = 2x^2 - 31x + 54$$
 is one possibility].

Q.814 The "increasing" list of numbers $a_1, a_2, a_3, ..., a_k, ...$ is defined by $a_1 = 1$, and $a_k^2 + a_{k+1}^2 = 2(\frac{a_k + a_{k+1}}{2} + 1)^2$ for $k \ge 1$.

- Prove that all terms in the list are whole numbers.
- (ii) Find a₁₉₉₀.

ANSWER The word "increasing" was inadvertently omitted in the statement of this problem. We first solve the amended question.

The given relationship between a_k and a_{k+1} is equivalent to $a_{k+1}^2 - 2(a_k + 2)a_{k+1} + (a_k^2 - 4a_k - 4) = 0.$ Solving this quadratic in a_{k+1} gives

$$a_{k+1} = a_k + 2 \pm \sqrt{8(a_k + 1)} \tag{1}$$

For an increasing sequence, $a_k \ge a_1 = 1$ and we must take $a_{k+1} = a_k + 2 + \sqrt{8(a_k + 1)}$ to ensure $a_{k+1} > a_k$.

Calculating the first few terms of the list we obtain

Note that for these small values of $n, a_n = 2n^2 - 1$.

[Perhaps you might notice first that the differences of successive numbers a_n form an arithmetic progression. That observation, $a_{k+1} - a_k = 4k + 2$, can be used with (1) to obtain the formula we have just exhibited.]

It is not too difficult to check by mathematical induction that this formula continues to apply for all positive integers n. Thus, from (1), if $a_k = 2k^2 - 1$

$$a_{k+1} = 2k^2 + 1 + \sqrt{16k^2} = 2(k+1)^2 - 1.$$

Thus all terms in the list are whole numbers, and $a_{1990}=2\times 1990^2-1$. [Without the word "increasing" in the question, (1) gives two values of a_{k+1} in terms of a_k , so the list is not determined uniquely. Thus $a_2=-1$, or 7. Taking $a_2=-1, a_3=+1\pm 0$. Taking $a_2=7, a_3=1$ or 17. In fact, (i) is still true, the possible values of a_k being $\{2n^2-1:n=0,1,2,\cdots\}$. If $a_k=2n^2-1$ then a_{k+1} is either $2(n+1)^2-1$ or $2(n-1)^2-1$. The possible values of a_{1990} would then be $\{2n^2-1:$ where $n=0,2,4,\cdots,1990\}$.]

The isosceles triangle ABC is obtuse angled at A and P is a point on the circumcircle such that

$$PB + PC = 2AB$$
.

Prove that 2AX = BC (where X is the point of intersection of AP and BC).

ANSWER Note that $\widehat{APC} = \widehat{ABC} = \widehat{ACB} = \widehat{APB}$.

 $\therefore \triangle AXC \sim \triangle ACP$ since they are equiangular.

$$\therefore PC = AC \times \frac{CX}{AX} \tag{1}$$

Similarly from $\triangle AXB \sim \triangle ABP$ we find $PB = \frac{AB \times BX}{AX}$ (2)

Adding (1) and (2), after replacing AC by AB in (1)

$$2AB = PC + PB = AB\frac{(BX + CX)}{AX}$$
$$\therefore 2AX = BC$$

Correct Solution: J. Choi (Trinity Grammar School)

- Q.816 Let $P_1, P_2, ..., P_n$ be any n distinct points in the plane. Show that it is always possible to dissect the plane into n regions $R_1, R_2, ..., R_n$ all congruent to one another, such that P_i lies inside R_i for i = 1, 2, ..., n.
- ANSWER Choose a point O in the plane which is not equidistant from any two of the points $P_k(k=1,2,\cdots n)$ (i.e. O is any point not lying on the perpendicular bisector of P_iP_j for any i,j). Let us relabel the points so that the lengths $OP_1, OP_2, \cdots OP_n$ are in increasing order. Draw a circle C_k , centre O passing through P_k for $k=1,2,\cdots n$.

For each k, divide the circle C_k into n equal arcs by points $Q_{k_1}, Q_{k_2}, \dots, Q_{k_n}$ in anticlockwise order around C_k , with P_k lying in the arc $Q_{kk}Q_{kk+1}$ for $k = 1, 2, \dots$,

n-1 and P_n lying in the arc $Q_{nn}Q_{n1}$.

We shall call a curve from S to T "good" if the distance from O to P increases steadily as P describes the curve. (See fig.2.) Obviously it lies in the annulus between circles centre O passing through S and T.

Now join O to Q_{11} by a straight line segment, join Q_{k1} to $Q_{(k+1)1}$, by a good arc for $k = 1, 2, \dots, n-1$ and draw a ray from Q_{n1} . Let γ_1 be the connected good curve so formed. (see fig.3).

Now let $\gamma_k, k = 2, 3, \dots n$ be the curve obtained by rotating γ_1 anticlockwise about O through $\frac{k-1}{n}$ of a revolution. Clearly γ_k contains the points $O, Q_{k1}, Q_{k2}, \dots, Q_{kk}, \dots, Q_{kn}$.

Denote by \mathcal{R}_k the region in the plane between γ_k and γ_{k+1} for $k = 1, 2, \cdots$,

n-1 and by \mathcal{R}_n the region between γ_n and γ_1 . Since a rotation of the plane about O through $\frac{1}{n}th$ of a revolution takes \mathcal{R}_k onto \mathcal{R}_{k+1} (or \mathcal{R}_n onto \mathcal{R}_1) all these regions are congruent. Also by construction the arc $Q_{kk}Q_{kk+1}$ of C_k lies in \mathcal{R}_k , and hence P_k lies in \mathcal{R}_k for $k=1,2,\cdots,n$.

[&]quot;Copyright School of Mathematics University of N.S.W. - Articles from Parabola may be copied for educational purposes provided the source is acknowledged."