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GRAPHS, BULBS AND MATRICES

Abraham Berman
Technion Institute of Technology

This article is a revised version of a talk given to the Mathematics Club at the Tech-
nion, Israel’s Technological University and subsequently printed in Etgar-Gilianot Mathe-
matica, the Israeli version of Parabola. One of the problems discussed in the article was a
question concerning the switching of electric bulbs situated at the vertices of a graph, and
the solution provided a nice illustration of the use of matrix methods and the theory of
equations in such a “real-life” problem.

By a graph we mean a network consisting of a finite number of vertices where some
of the vertices are connected by an edge. Two vertices connected by an edge are said to
be neighbours.
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The first example is of a grapi; which consists of two connected vertices. SIn the second
example we have a graph with four vertices. Here vertex No.1 is not a neighbour of vertex
No.3 and vertex No.2 is not a neighbour of vertex No.4. All other pairs of vertices are
connected. The third example has six vertices and each of the first three vertices is a
neighbour of each of the last three vertices.

Qur problem is this: We are given an arbitrary graph G with n vertices. At each of
the n vertices there is a bulb and an on/off switch. Turning a switch activates the bulb
at it and its neighbours, that is if the bulb was off it will be lit and if it was on, it will be
off. Initially all bulbs are off. Prove that operating some of the switches all bulbs can be
turned on simultaneously.

In the first two examples this can be achieved fairly simply. The first one is trivial:
operating switch 1, both bulbs are lit up which is exactly what we want to achieve. The
same is true of a graph of any size in which every pair of vertices is connected:; operating

any one of the switches will light up all the bulbs simultaneously. In the second example
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we must operate all the switches 1,2,3.4 in succession. The following diagram shows the

state of the bulbs after each step.
1 2 1 2 1 2 1 2 1 2

4 3 4 3 4 3 4 3 4 3
Switch 1 Switch 2 Switch 3 Switch 4

We end up with all bulbs lit up. The solution for the third example will be given
later.

In the case of an arbitrary graph it is by no means obvious that the desired end can
be achieved. Let us formulate the problem 1n a more arithmetic form. Suppose we have a
graph G with n vertices and we operate k switches at the vertices sy, -, Sk- The desired
end result “all bulbs lit” will be achieved if it is true that for each vertex v the number of
those neighbours of v, including v itself, which belong to the set § = {s1,-+,si} is odd.
For then the number of times the bulb at v is turned on or off is odd hence if it started
“off” it will end up “on”. Is it possible for any graph G to find such a subset of switches?
Clearly all that matters is the subset S of switches to be operated, but not the order in
which we operate them.

To complete the “arithmetization” we formulate the problem in matrix language. We
associate with G an n x n matrix A = (a;;), that is an array of n? numbers arranged in a
tableau of n rows and n columns, with a;;, the entry in the i-th row and j-th column, as
follows:

gy =1 i=12-",n

a;j=1 if i and j are neighbours

aij =0 otherwise.

A is usually called the incidence matrix of the graph G. For instance the incidence

matrix of the graph of Example 1 is



and the incidence matrix of the graph of Example 2 is

1 1 & 3
1110
A_ﬂlll
1 011

Note that the incidence matrix of a graph is always symmetric, that is a;; = ay; for
all pairs (7,7) because if ¢ is a neighbour of j then j is a neighbour of i. The “principal
diagonal” of entries a;; consists of all 1’s.

Now select a subset {s;,---,sx} of the vertex set {1,2,---,n}, representing those

switches which we want to operate. Define the numbers z,z3,---,z, as follows: set
zj =1 if j equals any one of the s;
zj =0 otherwise.

For each ¢ form the sum
@171 + aipTa + -+ QinTy = €

Here a;; = 0 if the vertex j is not a neighbour of i and z; = 0 if j is not one of the
selected switches. Therefore a;jz; = 1 exactly when j is either a neighbour of ¢ or equals
i, and j is also one of the selected switches s. Our aim is then to determine the collection

(z1,22,++,7,) of 0’s and 1’s such that each of the numbers e; turns out to be odd. So we

are finished if we can prove the following theorem:

Theorem. Let A = (a;;) be the incidence matrix of a graph G with n vertices, that is a
symmetric matrix of 0’s and 1’s, with a;; = 1 and a;j; = a;; for all pairs (i,7). Then there

is a collection (1,4, -+ ,2,) of 0's and 1’s such that

e; =a;T ++ anry isoddforeveryi=1,2,---.,n

Notice that the e; are positive integers (a sum of 1's) or perhaps 0, but their actual
value is of no interest, only their “parity”, that is their being even or odd. This leads us

to the next important step: we regard 0, 1 and e; not as ordinary numbers but as numbers
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modulo 2, that is members of an arithmetic that contains only two elements, namely 0 and

1 and which has the following addition and multiplication tables:

+ |0 1 x | o 1
0|0 1 oo 0
1|1 0 1 |8 1

The only unusual rule is 1 4+ 1 = 0, expressing the fact that the sum of two odd
mumbers is even. For instance the sum of an even number of 1’s is 0, the sum of an odd
number of 1’s is 1. The set of these new numbers is usually denoted Z,. They form a field,
meaning by this that they share with ordinary real numbers the usual laws of arithmetic.
The readers surely know that every three real numbers z,Y,2 satisfy the following:

a. Addition is commutative

r+y=y+=zc

b. Addition is associative

s+(y+z)=(z+y)tz

c. There exists a unique number, 0, satisfying
z+0=1z
d. There exists a unique number, —z, such that
z+(—x)=0

e. Multiplication is commutative
TY = YT
f. Multiplication is associative
z(yz) = (zy)2

g. There exists a unique number, 1, which is different from 0 and satisfies
zl==zx

h. For every = # 0 there exists a unique mumber z ™" such that prTl =1
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i. Addition and multiplication are related through the distributive law
z(y + 2) = zy + z=.

The above nine properties are the axioms in the definition of a field. To be more
precise: A field is a set F' with two operations called addition and multiplication. The
addition operation associates with every two elements z,y € F an element z + y € F and
the multiplication associates with z,y an element zy € F, in such a way that the above
mentioned nine properties are satisfied.

The set of real numbers is an example of a field and so is the set of rational numbers
and complex numbers, on the other hand the set of integers is not a field (why?). More
importantly for our present purposes also Z, is a field. Readers are invited to check that
Zy with addition and multiplication as defined above indeed satisfies the nine axioms for
a field. Why is it important to know that Z; is a field? Let us first formulate the theorem
to be proved in terms of Z;. The theorem states that if A = (a;;) is a symmetric n X n

matrix “over Z;", that is a;; = a;; € Z3, a;; = 1 € 2, for all , §, then the n equations
anTr+ -+ Gintn=1,1=12....n

have a solution (z,,---z,) with z; € Z,.

What have we gained with this new formulation of the theorem? First of all the odd
numbers ¢; in the original formulation have been replaced simply by 1. More importantly,
we have converted the problem into one of the basic problems of algebra namely solution
of a system of n equations in n unknowns, with coefficients a;; in a field. It is here that the
importance of Z, being a field enters the argument. When has such a system of equations
a solution (z,,---,z,)? Algebra gives a simple answer: the system has a solution if and
only if it is true that any “relation” that the left hand expressions satisfy, is also satisfied
by the “numbers” (elements of the field) on the right hand side. Actually algebra tells
us much more: it gives us all the solutions if the solvability condition is satisfied, and
the number of equations need not even be the same as the number of unknowns. Those

refinements need not concern us here.



What do we mean by “relations”? Instead of giving an accurate definition, we shall
be satisfied with showing an example which will illuminate sufficiently the meaning of the
condition. Consider the following three equations in three unknowns (with coefficients
ordinary numbers): 2xy 429 = 1, 22 + 225 = 1, £y + 22 + z3 = 2. This system has
no possible solutions; for if we add the first two equations and subtract from them twice
the third equation we get 0 on the left hand side (irrespective of what zy, x4, 3 are)
but 14+ 1 —2x 2 = —2 on the right hand side, a contradiction. Had we taken 1 instead

of 2 on the right hand side of the last equation,, no contradiction would have arisern,

and indeed 7y = 25 = 73 = % is then a solution (there are many others, for instance
¢y =1,29 = 1,23 =1 is also a solution).

The solvability condition can now be applied to our Theorem. What we necd to show
is that every combination of the n equations in the theorem which gives (0 will also give
0 on the right hand side. First we note that since the only numbers in 2 are 0 or ) S
“combination” merely means that we select a subset of the equations and add them up.
The combination results in 0 if for each zj the number of those coefficients aj; which are
equal to 1 when ¢ is one of the selected equations, is even. For the sum of an even number
of U's in Z; is 0. To simplify notation let us assume that the sum of the 1st, 2nd, - -- k-th
equations (the left hand sides) is 0. This is no restriction in generality; we can achieve it
by simply renumbering the vertices of our graph @. Consider the smaller submatrix (aij)
where ¢, j go from 1 to k. We know that in each column the number of 1’s is even, and so
the total number of 1's is even. But we also know that each diagonal element aj; is 1 and
the number of 1's under the diagonal is the same as above the diagonal (since the matrix
is symmetric) hence the total number of off-diagonal terms a;j,1 # j which are equal to
1 is even. It follows that the number of diagonal terms, that is k, must be even if the
sclected combination is to give 0, hence the sum of the k 1's on the right hand side of the
equation is also 0, as required by the solvability condition. The final conclusion is that the
system of equations (over Z;) in the theorem does have a solution and this was all that
was required for the switching problem to have a solution.

You may be excused for thinking that perhaps the algebraic machinery used in the

proof is too “heavy” for such a simple switching problem. If so, you are invited to submit
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a simpler solution; both Etgar-Gilionot and Parabola will be happy to publish alternative
solutions submitted by readers.

The algebraic method certainly has one great merit: it provides a systematic way to
find a solution. Let us demonstrate how it works for our example 3. The adjacency matrix

of this graph is

14 0 a 1 .1
010111
001111
e 1 11100
1 118140
1 11001
and the system of equations to be solved (in Z;) is

1+ 24 + 25 + 1 =1

TotTs+rsF+xg=1

Tyt ayt+rs+ag=1

Tyt agtazt+rg=1

1+ 2o+ a3+ x5 =1

zy+x+a3t+as=1
From the first threc equations we find »; = r; = 73 and from the last three z4 = x5 = rs.
Replacing z2 and 23 by z1, zs and z¢ by 74, and observing that 2y + 1 + 2 =23, T4+
14+ 24 = T4 in Z,, all six equations reduce to 7y + #4 = 1. One solution is 1, = 1, &4 = 0
and we get (z3,22,73, 74, 25,%6) = (1,1,1,0,0,0). That is, we operate switches 1,2 and
3. You may easily convince yourself that this indeed does what we want. An alternative
solution is £; = 0, r4 = 1 (there are no others), leading to the operation of switches 4, 5
and 6.

Finally to test your skill, here is a graph on 10 vertices (well known to graph theorists

nuder the name of Petersen’s graph). Which switches to operate? Answers are welcome,
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