Parabola Volume 27, Issue 1 (1991)

DO COMPUTERS AND CALCULATORS LIE?

By Bill McKee*

Introduction

In everyday life we tend to trust the numbers which come out of a computer or
calculator. For example, I know that the additions and subtractions on my monthly
bank statement will be done correctly. Of course, some of the numbers being added or
subtracted may be wrong but that is due to human error in entering the data into the
computer. However, there are some simple situations in which computers and calculators
can give results which are clearly incorrect and, what’s more, the results we get depend
on the machine we are using and the way in which we do the calculations. In this article.

I will use the word “machine” to refer to both computers and calculators.

An Example

Every drover and his dog know that if we take any number, add one to it, and then
subtract one we end up with the number the dog first thought of. In symbols we have, for
any .r,

(142)~1=g¢,

[have two calculators. Let's see what they think of this. The table below shows the results

of the calculation (1 + z) — 1 for various values of z on each of my two calculators.

T Calculator 1 Calculator 2

12345 x 101 12345 x 104 12345 x 104

12345 x 10~3 1235 x 10~% 12345 x 105
12345 x 10~ 123 x 108 1234 x 106
12345 x 10~7 12x 1077 123 x 1077
12345 x 108 1w 1078 12 x 108
12345 x 10~ 0 0

This is a little worrying. Let us re-arrange the calculation as (z — 1) 4+ 1 and see what

happens:

* Bill is an Applied Mathematician at the University of New South Wales

9

T Calculator 1 Calculator 2
12345 x 10~ 12345 x 104 12345 x 1074
12345 x 1073 12345 x 1073 12345 x 10~
12345 x 1078 1234 x 10~% 12345 x 108
12345 x 1077 123 % 10~ 1234 x 10~°
12345 x 1078 12 %1078 123 x 1078
12345 x 107° 1x107° 12 x 1077
12345 x 10710 0 0

This is even more worrying. Re-ordering the calculations is giving answers which
are clearly not correct either, differ from the previous ones and, as before, vary from one
machine to another. To try and sort this out, lets put these two calculations onto the

computer at my work:

I

(14+x)—-1

(z—=1)+1

12345 x 10°

12345 x 1071
12345 x 1072
12345 x 1073
12345 x 104
12345 x 1072
12345 x 10~
12345 x 1077

11234500 x 10°
.1234496 x 107!
.1234531 x 1072
1235008 x 10~3
1239777 x 10~*
1192093 x 1073
1192093 x 10~
0

.1234500 x 10°
1234502 » 107!
1234472 x 1072
1234412 x 1073
.1233816 x 10~*
1251698 x 107°
.1192093 x 10~¢
0

This is even more confusing - we are getting still other results. You might like to
experiment on machines available to you. It is the case that any machine will ultimately
give 0 as the result of the calculation (1+z)—1 for sufficiently small values of z. Equally,
any machine will ultimately give 0 as the result of the calculation (z + 1) — ¢ when z is

sufficiently large.

In order to gain some understanding of what is leading to the above results, we need
to know how computers store and manipulate numbers. Before doing so, however, we
should remark that the examples presented above are not just puzzling curiosities but
things which should alert us to potential dangers in calculations. For example suppose we

had, in the middle of some computer program, to calculate r = z+y—z and then to divide

10

some other number by this quantity. If » were small and y and z were both 1 or, more
generally, if y and 2 were equal and very much larger than i, the machine evaluation of
r could be subject to quite large relative errors leading to large errors in the result of the
division. For very small values of z, the machine would give 0 as the value of r, leading to

the program aborting when division by r was attempted.
Computer Representation of Numbers

We all normally use the decimal system to express numbers. This is beeause we have
four fingers and one thumb on each hand. If we had evolved with only three fingers and

one thumb, we would almost certainly use the octal system, i.e. use base 8 not 10.

Fortunately, most calculators use the decimal system so let’s begin our discussion
there. We all know that the decimal expression 12.345 represents the number 1 x 10! +

2x10°+3x107' +4%10"2 +5x 103,

Now, a calculator can only store a finite number of decimal places so that, for example,
if I enter the number z; = 0.112233445566778899 into my calculator it gives me back
0.1122334455, i.e. all other digits are lost. Equally, entering z, = 0.112233445599999 also
gives me back 0.1122334455. My machine cannot distinguish between r, and z, and so

would give 0 as the result of the calculation (2, — 25) or even 10'(z, — z3).

What actually happens will vary from machine to machine so let us consjder a “typical”
decimal machine with a mantissa of length & digits. In such a machine, numbers are stored

in the form

:tod] dgdg .o dE x 107

where the integers d;, dy, ... d; lie between 0 and 9 inclusive. This form represents the
number

H(dy x 107 +dp x 1072+ ... +dj x 107%) x 10,

‘The normalised form is almost always used, which means that d, # 0 unless, of course,
the whole number is zero. This means that 13.674 would be stored as 0.1367400 x 102

on a 7 decimal-digit machine (A = 7) rather than as 0.0136740 x 10°. {Of course, the

il

machine may print out the number as 1.367400 x 10" or in some other form, but that 1s

an unimportant detail}.

Typically, k = 10 and —99 < n < 99. We can immediately see that, on such a machine,
not all numbers can be represented exactly and that, disregarding the sign, there is a largest
number (0.1111111111 x 10%) and a smallest non-zero number (0.1000000000 x 10~9%)
that can be represented exactly. If a particular number has too many decimal digits to be

represented exactly machines generally do one of two things:
(a) chop, i.e., ignore all digits after the k-th

(b) round,ie. add 5 to the (k + 1)th digit then chop.

The difference between the actual number and its machine representation is usually

called the round-off error (r.o.e.) irrespective of whether the machine rounds or chops.

Now lets consider what happens when we perform some arithmetic operation (addi-
tion, subtraction, multiplication or division) on two or more numbers. A standard example
is 2/3. One of my calculators gives 0.6666666667 and so has rounded whereas the other
calculator gives 0.6666666666 and so has chopped. Roundoff can be a particular problem
if we are subtracting two numbers that are almost equal. The details will vary from ma-
chine to machine but we will consider the ideal case in which each individual operation on
k-digit numbers is performed exactly and the result then rounded or chopped to k digits.
We will illustrate by calculating (1 + z) — 1 on a decimal machine with a 10-digit mantissa
when z = 0.12345 x 10~5. This z value would, of course, be held exactly by our machine.
Now 1 + = = 0.10000012345 x 10'. Our machine would round this to 0.1000001235 x 10
whereas a chopping machine would give 0.1000001234 x 10'. Subtracting 1 would thus
give 0.1235000000 x 10~* on a rounding machine and 0.1234000000 x 10~% on a chopping
machine. What actually happens on any real machine may well vary from this “ideal”
situation but all machines will give erroneous results if (1 + 2) contains more significant

digits than the mantissa can accommodate.
This sort of thing can cause problems if we try to approximate derivatives numerically.

12

As you know, the derivative of flx) is defined by

ip e Pl h) — flz)
fiiz)= }]_I'T:} s ; (1)

For very complicated functions which we do not know how to differentiate analytically,
we would expect that using small values of % in the r.h.s. of (1) would give us good
approximations to f'(z) and that the approximations would get better and better as /i got
smaller and smaller. This is true in principle but the finite mantissa length on any real
machine ultimately defeats this strategy. After a certain point the approximation begins
to get worse as the machine fails to represent (z + k) exactly and we eventually get 0 when
the machine cannot distinguish (z + k) from z. For z # 0, point is determined by the
number of digits the machine can hold in its mantissa. You might like to experiment on
your calculator with f(z) = ¢*, z = 1 starting with & = (.1 and successively reducing

by a factor of 10 each time.

In contrast to calculators, computers generally do not use the decimal system in their
internal working. They usually represent numbers in binary form (base 2), octal (base 8)
or hexadecimal (base 16). If we enter a number in decimal form into such a computer,
the number is converted into binary (or octal or hexadecimal) form, all calculations are
then done in this form and the results re-converted back into decimal on output so we
can understand them. In addition to the round-off problem discussed above there may be
additional errors introduced in the conversions between decimal and binary. For example,
the number -i—la clearly has a decimal form of finite length whereas its binary expansion is
infinitely long and so would be rounded or chopped on a computer, mtroducing a small
error. The computer I used in the example quoted earlier has a mantissa 24 binary digits
long, which corresponds approximately, but not exactly, to 7 decimal digits. This explains
the quite different results obtained for (14) — 1 between the computer and both of my

calculators.

We now realise that each time a machine performs an operation there is likely to

be some roundoff error introduced. If a particular program requires a lot of calculations,
10°

, 2 Lok .) 1
roundoff error may build up significantly. Consider, for example ZU.], ie. add 10 to

n=1

13

itself 105 times. A decimal machine will do this exactly but a binary machine will not. For

example my computer at work gives 9998.557 instead of 10*. Neither machine would give
3000

. ‘)) 1
the exact value of E (5) , however, since the binary and decimal representations of 3
n=}

are both infinitely long.

In some circumstances, roundoff error may build up catastrophically and completely

ruin a calculation.
Strategies to reduce roundoff error

We now recognize that computers and calculators are finite devices and cannot hold an
infinite number of decimal or binary digits. We cannot eliminate roundoff error. We must
learn to live with it and be on the lookout for manifestations of roundoff error corrupting
the results of our calculations. There are strategies for reducing the effects of roundoff

error. Two of the most obvious are listed below.
Strategy 1

Since each operation (+, —, X, +) is likely to introduce some roundoff error it is sensible
to try to reduce the total number of such operations. A typical example is in the evaluation

of polynomials. Consider a cubic
Hz)=a+ bz +ex® + dzt.

This requires 3 additions and 6 multiplication (since dr? = d x = % ¢ % z etc). However,
the nested form

plz) = a+ z(b+ z(c + dz))

requires 3 additions and 3 multiplications. The saving for high-order polynomials is obvi-

ous.
Strategy 2

Avoid subtracting numbers that are almost equal. A good example is provided by the

formulae for the roots of the quadratic

! +ar+ 4.

14

The exact mathematical expressions for the roots are, of course.
Iy = = {—"{] = ﬁ'? =% 43]

and

1
-Tg::;[—&-i- ﬁf&z—‘l‘ﬁ .

Let us consider the case when a is positive and a” is very much larger than 453. Then
va? — 48 is approximately a. The expression for x, then involves subtracting numbers
which are almost equal whereas that for x; does not. We would therefore expect the
numerical evaluation of 7y to be subject to the effects of roundoff and hence for our
calculated value of 2, to incur potentially large relative errors. However we also know that
r1xy = [3 so, after calculating z,, we can caleulate 27 from x; = #/z,, a form which does

not suffer from this problem. You might like to experiment with this on your machine.
Conclusion

All machines are subject to the effects of roundoff error sinee they can only hold a
finite number of binary or decimal places. Each arithmetic operation is thus likely to incur
a small error. In most circumstances, these effects are of no real importance. However,
we should be aware of the fact that there are certain cireumstances where roundoff can be

important and act accordingly.

15

