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Q.829

ANS.

Q.830

SOLUTIONS OF PROBLEMS 829-839

(i) Let ¢ be any integer. Show that the remainder when ¢?'is divided by 4 cannot
be either 2 or 3.

(ii) Let = be a positive integer, A =2z —1, B =5z -1, C =13z — L. Show
that any two of A, B, C may be perfect squares, but that it is impossible that all

three are squares.

(i) For use also in Q.834 we shall prove the somewhat stronger results:
(a) If z is odd then a? = 8k + 1 for some integer k.
(b) If = is even then % = 8k or 8k + 4 for some integer k.
(a) , being odd, differs by 1 from a multiple of 4:-
z = 4m + 1 for some integer m.
Then z? = 8(2m® £ m) + 1.
(b) If z is twice an odd number then using (a), o2 = 2% x (8k+1) = 8(4k)+4
for some integer k.
Otherwise z is a multiple of 4 and z? is a multiple of 16.
(ii) Obviously A is odd. Using (i) (a), if A is a square it is 8k + 1 for some £, so
gi= 13—";}-1 + 1 = 4k + 1, an odd number. Hence B and C are even. Hence if all
three are squares there are integers a (odd), b and ¢ with 4 = a®, B = 4b*, and
C = 4 .
Since 84 — 11B + 3C = 0, after dividing by 4 we obtain 24% = 11b? — 3¢*.
The RHS is even only if b,c are both even, or else both odd. In either case,
using (i) the RHS is then a multiple of 4. (e.g. 11(4k; +1) — 34k +1) =
4(11ky — 3kz + 2)). But the LHS is twice an odd number.
Hence it is impossible that all of A, B,C are squares. Taking z = 1,z =3

and z = 2 shows that any two of 4, B, C can be perfect squares.

;I
The curve with the equation % - l}:_? — 1is called a hyperbola. The straight lines

24 % = (), through the origin are cailcd asymptotes. If a = b the asymptotes are
a

at rightangles, and the hyperbola is called a rectangular hyperbola.
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Let the perpendicular distances from a point P on
a rectangular hyperbola to the asymptotes be d;, and
dy. Show that dy x dy = 2a*. Deduce that by taking

_A.NS.

Q.831

vy = new axes along the asymptotes and adjusting the unit
/’ d 4 s&\ of length appropriately, any rectangular hyperbola can
' be given the Cartesian equation XV = 1.

If you attempted this question you probably noticed that d; x dy = a%/2, not
2a%. (e.g. Try P = (a,0),d; = ds = a/v/2). My apologies for the inaccuracy.

We use the theorem that the distance, d, from a point (z,y) to a line whose
equation is in “perpendicular form” (cosa)z + (sina)y = p, is given by d =
|(cos a)zy + (sina)y; — p|.

T
Then d;, the distance to the asymptote — =01is |—= , and dj, the
1 P v" f vz \/' 5 :

distance to the asymptote — ——0 18
mptote gt g =0l 54 ol

o) o

=~§-,

2

dl}({ig‘_J

since P(z1,y1) lies on the hyperbola z? — y? = a
If we choose new axes OX,0Y along the asymptotes with a new unit of
length equal to k times the unit of length in the 0,0, co-ordinate system, the
coordinates of P are now (X,,Y]) where kX; = d; and kY] = d».
2

a
kleyl =didy = ?

k= %, this simplifies to X;¥; = 1. Hence the equation of the hyperbola in
the OX,OY system is now XY = 1.

Let AABC be any triangle.

Let M N, P be the mid-points of the sides, D, E, F the
feet of the altitudes, H the orthocentre and X, Y, Z the
mid points of HA, HB, HC respectively.

Show that the points M, N, P, D, E, F, X,Y, Z all lic on one circle. This is called
the nine point circle of AABC.
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ANS.

It will be sufficient to prove that the circle through the mid-points of the sides,

M NP, passes through D and X.

A Let O be the circumcentre of AABC, so that OM L
BC; let R be the mid-point of OH; and let the lines

P [ e AM and PN intersect at Q. The diagonals of the par-

it allelogram M N AP intersect each other at Q. The per-

pendicular bisector of PN passes through @ and is par-
allel to OM and AD, so it bisects not only AM, but

Q.832

ANS.

M D  C also both OH (at R) and MD.

Since similar reasoning shows that R is also on the perpendicular bisectors of
PM and MN, it is the circumcentre of AMNP. Since R lies on the perpendicular
bisector of M D, it is equidistant from M and D, whence D lies on the circle
MNP.

Now let X' be the point of intersection of the circle MDNP with AD. We
shall prove that AX' = HX' so that X' coincides with X.

Since ZX'DM = 90°, X'M is a diameter of this circle, so R is the mid point
of MX'. Since AHRX' = AORM, HX' = OM. (1)
Since Q, R are mid-points of M4 and MX', AX' =2QR. Also since AABC is
similar to AMN P, with magnification factor equal to 2, the distance from BC
to the circumcentre of AABC is twice the distance from NP to the circumcentre
of AMNP; ie. OM = 2RQ = AX'. Now using (1), HX' = AX'. Hence X!

coincides with X, and the proof is complete.

Let A, B, C be distinct points all lying on a rectangular hyperbola. Show that
the centre of the hyperbola (the point of intersection of the asymptotes) lies on

the nine point circle of AABC.

For simplicity we shall assume that A, B,C all lie on the same arm of the hyper-
bola. By Q.830 we can choose co-ordinates so that the equation of the hyperbola

g gy =1,
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Let the three points be A(a, i), B(b, 1) Cle, -1-]

\ witha>b>c 1‘:- 0. The mid- Emnts of the sides are i
M(ﬁ;—c: -}_; ) N{a-{—c 2"829 dp(a—l-b +'5)
It is sufficient to show that ({0,0), M, N, P are concychc

s ’q points, which can be achieved by showing that
T &\  * LOMP=/ONP.

ZONP =6, — ¢; where 0, is the angle made with O, by NP produced, and
¢ is the angle made with O, by ON.

tan 61 — tan t}h

S.tan ZONP = W
1_1 1
Now tan f; =gradient of PN =gradient of BC (since PN || BC) = - b = ~
1
and tan ¢; = gradient of ON = -1+— 1
a-+c ac

gradient of PM — gradient of OM

1+ gradient of PM x gradient of OM
1 L

ac be

Ty

ac  be

Simililarly tan ZOMP =

Since tan ZON P, the angles are equal and the proof is complete.

Q.833 If z is any positive integer, f(z) denotes the new integer obtained when the last
digit of z (using the usual decimal representation) is transferred to the other end;
e.g. f(1356) = 6135. Find the smallest integer such that f )= Txa.

ANS. Let y = 7z. Since y has the same number of digits as z, the first digit of ¥y must
be 7,8, or 9.
If y begins with 7 we perform the following division, at each step appending
the new digit just obtained in the quotient as the next digit in the dividend,
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Q.834

ANS,

Q.835

?}I 0] 10 3; o
101
(See fig.1. The next digit to be obtained in the quotient is a 4. It will be placed

after the ---01 on both lines). The process can come to an end only when we
obtain a 7 as the next digit in the quotient, with 0 to carry.
The complete calculation yields

7)7101449275362318840579

1014492753623188405797
The same procedure applied to a number beginning with & or 9 halts (with the

digit 8 or 9 respectively) after the same number of steps, yielding somewhat larger
quotients. Hence the smallest integer z such that f(x) = 7z is the quotient in

the above calculation.

Let N(n) denote the number of different solutions in non- negative integers
w,z,y,z of the equation w? + 22 +y? + 22 =3 x 2".
For example, N(0) = 4 since the only solutions of w® + 2% + y? + 22 = 3 are
(w,2,9,2) = (1,1,1,0) or (1,1,0,1) or (1,0,1,1) or (0,1,1,1). Find N(1991).

Ifn=3 wz-l-:1:‘2+,f,.r2—|—:=!2 =3x2"=0 (mod8) Since X?=1 (mod38)
if X isodd, and X2 = 0 or 4 (mod 8) if X is even (see Q.829), it is easy to
check that it is impossible to have w? 4+ z? + y? + 22 = 0 (mod 8) if any of
w, z,y, z are odd. Hence every solution of w? +z?+y? 422 =3x2" (withn > 3)
is of the form (2W)? + (2X)? + (2Y)% + (22)* = 3 x 2" where (W, X,Y,2Z) is
a solution of W2 + X2 + Y2 + Z2 = 3 x 2"~? (and, conversely, for each such
(W, X,Y, Z), (2W,2X,2Y,22) is a solution of w® + 2% + Y422 =3x2").
Hence N(n)= N(n-=2)ifn = 3.

Thus N(1991) = N(1989) = --- = N(3) = N(1).

Since w? + 22 + y? + 22 = 3 x 2! for (w,=,y,2) equal to any of the twelve
arrangements of (2,1,1,0), N(1) = 12 = N(1991).

It is known that the region of maximum area having given perimeter p is the

circular disc with radius 2%
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Assuming this or otherwise prove that of all quadrilat-
erals with sides of given lengths a, b, ¢, d that of maxi-

mum area is cyclic.

Construct on the sides of the second quadrilateral
segments of circles congruent with the corresponding
pieces in the first diagram. The figure A'P'B'Q'C'R'D'S' A’
has the same perimeter as the circle, hence its area
must be smaller, When the areas of the congruent seg-

ments are subtracted, we are left with

Area A'B'C'D' < Area ABCD (QED).

Q.836  Let e, f be the lengths of the diagonals of a cyclic quadrilateral with sides of

lengths a, b, ¢, d (see figure).

/.

H \"_/

/K ANS.

Show that (i) e(ab + ¢d) = f(ad + bc)

(Hint: See Q.818).
.y 2 _ (ac+ bd)(ad + be)
(if) 7 = (ab + cd)
A (ac + bd)(ab + cd)
- (ad + bc)
(You may assume Ptolemy’s Theorem: ef = ac + bd).

(1) (It was shown in Q.818 that if a,b, ¢ are the side
lengths of a triangle of area A inscribed in a circle of
radius R then abc = 44R.)

Let R denote the radius of the circle HKLM. By

the above result

eab + ecd = 4R(Area AHKL) + 4R(Area HLM)

e(ab + ed) = 4R(Area of HKLM).
Similarly f(ad + bc) = 4R(Area AHKM + Area AKLM)

Hence the result.

(ii) Since from (i) f =e

= 4R(Area of HKLM).

(ab+cd)
(ad + be)
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Gl e apitt o)

bd
whence e? = L +ab Eii.!- bc}' The expression for f? is obtained similarly.

Q.837 Let the sides in order around any quadrilateral have lengths a,b,c,d, where

a? + ¢ = b? + d®. Prove that the area of the quadrilateral is half the product of

the lengths of the diagonals.

ANS. Let the diagonals intersect at X (fig. 1) andlet ZAX B =
LCXD =0, LBXC =/LAXD = ¢.
Since 8 + ¢ = 180°, cos¢ = —cosf (1)
Using the cosine rule
a® +c? = (AX? + BX? - 2AX.BX cosf) + (CX* +
DX*-2CX.DX cosb)

and b+d? = (BX?+CX?—2BX.CX cos $)+(DX*—AX*-2DX.AX cos ¢).

Since a? 4+ ¢2 = b? + d?, we have using (1)

(AX.BX + CX.DX)cosf = —(BX.CX + DX.AX)cosé.
This is impossible if cos@ # 0, since one side of the equation is positive, the
other negative. Hence we must have cosf = 0, i.e. the diagonals intersect at
right-angles.

. Area ABCD = Area AACD + Area AACB
- %AC.DX + %AC.XB

AC(DX + XB) = %AC,DB. (QED).

b3 | =

Q.838 Rods of lengths 60, 52, 39, and 25 units are joined together at their end points in

any order to make a plane quadrilateral. Calculate the maximum possible value

of its area. (Note that 602 + 257 = 50° + 397%).
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ANS. If the sides of length 60 and 25 are opposite, by Q837 the area of the quadrilateral
is 1ef where e and f are the lengths of the diagonals. The maximum area occurs

when the quadrilateral is cyclic, by Q.835, and then using Q.836,

_ 1 [(ac+bd)(ad + be) (ac + bd)(ab +cd) _ 1
= (ab + cd) P i
=§mx%+mxmy (1)

If the sides of length 60 and 25 are adjacent, meeting at
the vertex B (see fig.2) the maximum area is attained

by making £B = 90°, since then by Pythagoras the-

orem and its converse ZD is also equal 90°, and the
quadrilateral is cyclic. The area of the quadrilateral is
now area AABC+ area AACD = (60 x 25 + 52 x
39) (2)

Comparing (1) and (2) we see that a maximum area of

A bo g 1764 sq units is achievable irrespective of the order in

F‘J < which the rods are joined.

Q.839 Prove that \3/41] + V1573 + {/40 — /1573 is exactly equal to 5.

ANS. Letz= ;/41] + V1573 + \3/40 — V1573.

Since (u 4 v)? = u® + v* + 3uv(u + v) we have

25 = (40 4 VI5T3) + (40 - V/I573) + 33/(40 + VI5T3)(40 — v/1573)(z)
=80+ 3V27z =80+ 9z
iy B =1

It is evident that z = 5 is a root (125 — 45 — 80 = 0) and since z® — 9z — 80 =

(z —5)(x? + 5z + 16) there are no other real roots. Hence z must equal 5 exactly.

Correct solution: G. Cheong (Sydney Boys High School).
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