Parabola Volume 27, Issue 3 (1991)

MOTION OF PLANETS AND SATELLITES
*John Blatt
Section 1. Kepler’s Laws

Early m the 17th century, Johannes Kepler established, from actual observations of
the positions of the planets in the sky, three laws of planetary motion. All three laws
were based on the, then very controversial, assumption of Copernicus that planets revolve
around the sun. Copernicus had assumed that the motion of the planets about the sun
was in circles, and as a result his description of the actual motion of the planets was not
significantly better than that of the ancient Greeks. This was one reason, but by no means

the only one, for the lack of acceptance of his idea.

[Kepler, basing himself on observations by the astronomer Tycho Brale, established a

different set of laws, which are now known as the three laws of Kepler. They are:-

1. Each planet moves around the sun in an ellipse with the sun at one of the two foci of

that ellipse.
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The motion of each planet along its orbit is such that equal areas are swept out in

equal times (this will be explained shortly).

3. The time each planet takes to go once around its ellipse is proportional to the 3/2

power of the long axis of that cllipse.

The secoud of these laws needs some explanation. Let us look at Figure 1, which
shows schiematically the elliptical path of a planet. At point A4 the planet is moving with
a veetor velocity U, In a short time interval £t, the distance the planet moves along its
path is v At, as indicated on the figure. If we draw straight lines from point 4 to the
sun, whichh we have placed at the origin of the system of coordinates, as well as from the
point A’ which the planet reaches after time /At, then these two straight lines together
with the segment AA" form a little triangle, whose area is shaded on the figure. Let us

now look at another point on the orbit of the planet, point B. This point is closer to the
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sun and it turns out that this means that the velocity v’ at that point is much bigger.
Correspondingly the distance v’ At between points B and B’ on the path of the planet is
bigger than the distance from A to A'.
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Drawing straight lines to the sun once more, we get the other shaded triangle shown
in Figure 1. Now we can understand the statement of Kepler’s second law. It is that the

two shaded areas are equal if the two time intervals At are equal to each other.

In this article, using no more than the mathematics that you know and Newton'’s laws
of motion, I intend to derive the second and the third laws of Kepler. It turns out that
Kepler’s first law, the one which says that the orbit is an ellipse, is harder to derive, and

would not fit within the space of this article.
Section 2. Polar Coordinates

Before we can discuss the motion of planets we need to develop a bit of elementary
trigonometry for the motion of a point around a centre. Let us refer to Figure 2. The point
A in this figure has coordinates z and y as its ordinary Cartesian coordinates. However, if
we are interested in the motion of a planet around a centre of attraction such as the sun,
then a better way to define the position of a point in the plane is through its distance from

the origin, shown as r in the figure, together with the angle 8. Using ordinary trigonometry
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FIGURE 2

on the triangle OAB, we immediately get

(1) = = cosf and (2]%=sin9‘
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We can solve these equations for z and y, respectively, to get
(3) z=rcosf and (4)y=rsind.
In these equations, all quantities, r, , z, and y, are functions of the time 1.

In order to get the velocity of a point moving in the zy-plane, we differentiate  and
y with respect to the time. Using the ordinary laws for differentiation of the product of

two functions, as well as of a function of a function, we obtain equations 5 and 6 for the

z— and y-components of the velocity, respectively.

dz dr . ,df
5) o= . ‘—_&-cosﬂr— Tbiﬂez
dy dr . dé
(6) vy = - = Etwsmﬂ-i-rcosﬂﬁ.

Since Newton's second law of motion involves, not the velocity, but the acceleration,
we shall need to differentiate once more with respect to the time, so as to get the z— and

y—components of the acceleration. These are shown below:

. dv, dPr . drdf do\* . d*
(T} az = — {—iﬁcoaﬂ—ﬂsmﬁgt-a —1 cosﬂ(dt) —rsmﬁ—&ﬁ

_dwy A drde . (d8\? 4?4
(B) gy e = —s:nl5'+2c056'—£—t——rsmﬁ (E) +rcosﬁ'di2_



These two equations are not obvious, and it takes a few minutes of work to obtain them.
However, their derivation is a straight-forward application of the laws of differentiation of

products and differentiation of a function of a function.

Let us now go to Figure 3 and let us take a lock at the vector U connecting the points

A and C. This vector is not meant to be any particular vector quantity.
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You may think of it as a velocily vector or an acceleration vector, or any other vector.
Normally, we describe this vector in terms of » and y components. The z-component of
the vector T is the distance AD on the figure, the y-component is the distance DC'. Using
trigonometry on the triangle ADC in the ordinary way, we obtain equations 9 and 10 for

these two components of the vector .
(9) vz =ucosf and (10) u, = usinf

In these two equations, u is the magnitude of the vector quantity ', i.e. the actual

distance from A to C on the figure, and the angle § is as indicated on the figure.

However, when we are dealing with motion around a centre of attraction, these two
components, i.e. the ordinary Cartesian components of a vector quantity u, are not the
most convenient ones to use. Also indicated on Figure 3 is another triangle, AEC, which
can also be used to describe the vector quantity . We shall call the distance from A
to E the “r-component of &@'" u,, since it is the component in the direction in which the
quantity r would be increasing. The distance from point E to point C we shall call the
“f-component of the vector u”, because that is the direction in which the point 4 would

move if the coordinate r stays constant and the angle # increases. Using trigonometry on



the trinngle AEC and the angle « indicated on Figure 2, we get equations 11 and 12 for

these alternative components of the vector T
(11) ur =ucosa and (12) uy = usina.

Since the set of components (9) and (10) and the set of components (11} and (12)
desceribe one and the same vector, there must be a relationship between them. Looking at

the triangles in figure 3 the following relation between the angles is obvious:
(13) a=p3— 6.

Let us substitute equation (13) into equations (11) and (12), and let us make use of

the formula for the cosine and the sine of the difference of two angles. The result is
{14) vy = ucosPcosd 4+ usinFsind
(15) ug = usinBcosl — ucos Bsinf.

When we use equations (9) and (10) within the right hand sides of equations (14) and
(15), we obtain the desired relationship between the two different types of component of

one and the same vector:
(16) w, = uycosd + uysinf
(1T) ug = uycos® —uysind.

So far. the vector w has been just any arbitrary vector in the plane. Let us now,
however, apply formulas (16) and (17) to the velocity vector and to the acceleration vector.
When we substitute the » and y components of the velocity vector, equations (3) and (6),

into equations (16) and (17), we obtain:

(18) v, = vy cosf + vy sinf = =

di
de

{19} vg = vycosb — vy sind = e

Before going on, let us observe that equation (19) gives us an alternative, and more
useful, way of deseribing Kepler's second law of planetary motion. Let us refer now to

Figure 4.



FIGURE 4.

The shaded area, OAA”", on this figure which appears in Kepler's second law, has been
divided into two separate areas by putting a point A" into the figure, such that the angle
OAA" is a right angle. If the time interval At is sufficiently short, then the distance from
A to A" is the product of the component of the velocity in that direction, i.e. vg, and the
time At. The area of the triangle OAA" is half the base OA, which is the distance we
have called r, times the height of the triangle AA"”. Thus the shaded area OAA" is given
by:

21* 5 Dt

In the last part of this equation we have made use of equation (19) for vs. The other area

(20) Area QAA" = %"(‘Uﬂ&f) =

AA'A" of Figure 1 is negligible by comparison, being of order (At)?.

Kepler's second law states that the area (20) is the same no matter where we are on
the path of the planet, provided only the time interval At is the same. Thus an alternative

statement of Kepler's second law is that the quantity L defined by

_ 29
{21) L=r pr

is constant during the motion of the planet. It is in this form that we shall derive Kepler’s

second law.

Having discussed the velocity vector, let us now turn to the acceleration vector. We
again use equations (16) and (19) to get the r and # components of the acceleration vector,
starting from the z and y components given in equations (7) and (8), respectively. The

result is:
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(22) a, = a,cos8 4+ a,sinf =
(23) ap = aycosf —a,sind =2

Though these equations may look somewhat formidable, you are actually already
quite familiar with one special case of these equations, namely the special case of uniform
circular motion. In uniform circular motion, the quantity r doesn’t change, and the

relation between the angle 8 and the time is given by:
(24) r = constant, # = wt [uniform circular motion)]

where w 1s a constant. Let us now substitute these special results for uniform circular
motion into our general results for the velocity and for the acceleration. Substitution into

equations (18) and (10) yields
(25) v, =0 and (26} vy =rw [uniform circular motion]

and substitution into equations (22) and (23) yields

(27) @p = —rw® = _v?i and (28) ag =0 [uniform circular motion].

These last two equations are the famous centripetal acceleration about which we have
heard already. The acceleration vector has zero component in the ¢ direction, meaning
therefore that the vector is along the line connecting the particle moving in uniform cir-
cular motion with the centre of the circle. The minus sign in equation (27) means that
the acceleration vector points towards the centre of the circle, and the value rw? of this
acceleration vector can be related to the velocity through equation (26) to be equal to
v* /r, which is the result that may have puzzled you in the past. It is now apparent that

these results are merely special cases of our general results (22} and (23).

Section 3. Central Forces and Kepler’s second Law

We are now in a position to derive Kepler's second law of motion from the results
which we have obtained. The essential step here is application of Newton's second law of
motion, relating the vector force F acting on a particle with its mass m and its acceleration

vector @ . This relation is



(20) F =m7@.

If we use r and # components of the vectors on both sides of equation (29), we then

obtain:
(30} Fr. =ma, and (31) Fy = ma,.

Simple as equations (30) and (31) may appear, a very important result is already sitting

in equation (31).

If, as is natural for the motion of a planet around the sun, we place the sun at the
centre of our coordinate system, then the gravitational force between the planet and the
sun is in the direction from the planet to the sun. That is, the only non-zero component of
the vector F is the component F,. The other component, at rightangles to this direction,

i.e. the component Fy, is zero. Thus, we obtain for any central force:
(32) ag =0 |[central force].

Substituting of equation (23) into (32) gives

drde &6
2 SR sl
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Let us now go back to Kepler's second law in the form of equation (21). If the quantity
L is indeed a constant of the motion, then its time derivative must be equal to zero. Let us
therefore differentiate L with respect to the time. This differentiation is shown in equation

(34).

dL  d [ ,d8] _ drdf ,d%0

B =5 [T dt] = Taa T A
By comparing equations (33) and (34) we immediately get the result:
dL

(35) = 0.

The time derivative of L is zero, so that L stays constant during the motion of

the planet around the sun. We have therefore derived Kepler's second law.

Observe the general nature of this derivation. The validity of Kepler's second law
does not depend upon the way in which the magnitude of the force F depends upon the

distance r between the body and the centre of attraction, We have not yet made any use
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at all of Newton's law of gravitation, that the force is inversely proportional to the square
of the distance r. Kepler's second law is valid no matter how that force depends upon r.
Kepler's second law is a consequence of the fact that the force points towards the centre
of attraction, i.e. that it is a central force. That, and only that, is what we have used in

this derivation.
Section 4. How Might Newton have Guessed his Inverse Square Law?

When I was a student in high school 1 was always puzzled by how Newton could
possibly guess such a law as his inverse square law. Of course, I don't really know even

now how he did. But it is not unreasonable to make a guess.

It is true that the actual motion of planets around the sun is along an elliptical orbit.
However, the ellipses are by no means as eccentric, that means as different from a circle,
as the one shown for purposes of illustration in Figure 1. Actual planets revolve around
the sun in very nearly circular orbits. Let us therefore for the moment assume that we
have some ideal planet, different from the actual ones, which revolves around the sun with
uniform circular motion. We can then apply equations (27) and (28). Substitution of

equation (27) into equation (30) yields the result

mu?

(36) F, =ma, = — [uniform circular motion].

Now let us look at I{epler’s third law. The time for a planet to run once around its
assumed circular orbit, let us call this time T, is the circumference of this orbit divided by
the speed. This gives:

2nr : . .
(37) T="— [uniform circular motion].
v
We solve equation (37) for v, and substitute into equation (36) to get:
4rimr
T2

At this stage, let us use Kepler's third law, which says that the square of the period,

(38) Fr=—

[uniform cireular motion).

T2, is proportional to ¥, the cube of the radius of the circle. (Kepler of course was talking
about the long axis of an ellipse, but if the ellipse becomes a circle then the long axis of
the cllipse is just twice the radius of the circle.) If we put this proportionally mnto equation

(38) we obtain the proportionality:
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(39) Fra —=.
T

This is in essence Newton’s universal law of gravitation saying that the force on the planet
is in the direction towards the sun, is proportional to the mass m of the planet, and is
inversely proportional to the square of its distance from the sun. The universal law of
gravitation is just one step away: If the sun and the planet are treated as two bodies
attracting each other, rather than merely the sun attracting the planet, that is, if the
sun and the planet stand in a symmetrical relation to each other, then if the force is
proportional to the mass of the planet m 1t must also be proportional to the mass of the
sun, which we shall call M. Putting in a constant of proportionality G, called the universal

gravitational constant we obtain Newton's law of universal gravitation:
(40) F, = -GMz Fy =0.
Section 5. General Discussion of the Radial Motion of a Planet

By the radial motion of a planet we mean the way in which its distance r from the
sun depends on time. We want to be able to get general results about this dependence,
without having to involve the way in which the angle # depends on time. We start by

substituting equations (40) and (22) into equation (30} to get

GM d? do\?
-S| 55 (2]

The first remark about equation (41), and it is a most important remark, is that the

mass of the planet, m, cancels out of this equation. This means that the motion of the
planet around its centre of attraction is completely independent of the mass of
that planet. Thus if the earth had twice the mass that it actually has, it would still move
about the sun in exactly the same way. (We are ignoring the small corrections arising from
the fact that there are gravitational forces between the earth and other planets in the solar
system.) Similarly the motion of an artificial satellite is, to the same approximation which
is a very good approximation, independent of the mass of that satellite. A great big heavy
satellite put up by the Russians moves in exactly the same way as a much lighter satellite
put up by the Americans. All that matters is the initial velocity, both in magnitude and

direction, at the point where the satellite separates from the last rocket stage.
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From the practical point of view. the trouble with equation (41) is that it involves not
only the dependence of r upon time, but also the dependence of § upon time. In order to
get rid of this dependence, we now make use of Kepler's second law in the form of equation
(21). We solve equation (21} for the time derivative df/dt, and substitute this result into

equation (41) to obtain

The quantity L appearing on the right side of equation (42) is a constant. It is not

the same constant for every planet but it is a constant value for any one planet.

To simplify matters further, we multiply both sides of equation (42) by the quantity
dr/dt and we put all terms on one side to obtain:

ay S (G I g
Jdt di? r2 3 ) dr

It 1s an easy matter to verify that equation (43) is completely equivalent to:

d |1 /d\* M [L?
”‘”I[i(&?) _T*"E}‘r}:c"

However, equation (44) implies that the quantity in the square brackets is a constant of

0.

the motion, i.e. it does not change with time.

It turns out that for motion of planets this quantity is negative, and we shall therefore

denote it by —H. The result is:

2 2
é(dr) -GM—I-;Lu—:—H,

(45) - 7

dt

We now solve this equation for the square of dr/dt to get:

dr\® 2GM L[? 2H
(46] (E) =—-2H + = "-—r? =‘;,2—(?‘—?1}(T‘2 —T}.

On the right hand side of this equation we have introduced the two roots r; and ra of the

quadratic equation obtained by setting the left hand side equal to 0.

It is apparent that the square of dr/dt, the quantity on the left hand side of equation
(46), can never become negative. Since the quantity on the right hand side is a quadratic

expresion which is positive if and only if r lies between r1 and ry, we therefore obtain the
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important result that the distance r of the planet from the sun can vary only between
as the lower limit and r; as an upper limit. These two values are shown in Figure 5 where
we have drawn the orbit schematically in such a way that the point closest to the sun

N
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lies in the positive z direction from the sun. This is not really a restriction, since we can
always achieve this by suitably choosing which direction in space we decide to call the
z direction. Assuming that the planet revolves around the sun in the counterclockwise
direction then the positive square root of equation (46) is appropnate for the value of
dr/dt along the section ABC of the orbit, and the negative square root is appropriate for
the section CDA. The lone axis of the orbit is the sum r; +r3. Using the standard relation
between the roots of a quadratic equation and the coefficients of that equation, we obtain

the relation:

GM
{47} ry =+ re = T

We now write down the derivative dr /dt from equation (46) for the path ABC along

which the distance r of the planet from the sun is increasing. This gives:

(48) % o= +\[£(T ~py rg =) [Path ABC).

2

Along this path ABC r is a monotically increasing function of the time t. Because of
this, an inverse function, t as a function of r, can be defined for this part of the path, and
the derivative dt/dr is simply the reciprocal of dr/dt. This yields:

dt 1 r
49) — = R
% dr  2H \/(r—r)(rz—r)

If we now integrate this equation from point A all the way over to point C then we get

[Path ABC).

one-half of the time T that the planet takes to run completely around its orbit and that
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one-half of the period is given by:

r dr
(50)5 \/;—./ 1/1‘—1‘1{?3—1")

Equation (50) is an explicit expression, involving a definite integral, for the period of

motion of the planet around its orbit.

In order to evaluate this integral we introduce the substitution:

f"-—-
Gl s a—ii. FEALL
Tp=—T1

As r varies from r; to rg, the new variable u varies from 0 to 1. Straightforward

substitution of equation (51) into (50) gives:

ry - r?—?]}u
N T = 4] — . dit.
(2 j u(l —u)

In order to simplify this equation, we carry out the differentiation indicated below

_—‘U
Ll V T

and we use this to obtain the result:

1

1 u__l_
3 Tju)du=—wu{]—u) = ).

We therefore write the quantity u in the numerator of the integrand of equation (52) as

(54)

1 3 .
(u— %] + % and obtain the result that the (u — ;] part integrates to 0. The remainder is:

T'1+3‘; . du
Vul(l —u)

The int.egral in this equation can be evaluated easily by the substitution w = \/u. This

(68) T =

reduces the integral to

1 1

(56) f 1 e i T T
—_— = = _,.b'll]. '{U = .
o Vu(l—u) xfl—wz 5
We now combine equations (47), (55) and (56) to get our final expression for the period of

the motion:

(57) T =

[ +"'".:}|3

\j‘?Gﬂ

This is the precise statement of Kepler’s thivd law of planetary motion. Of the quantities

appearing on the right hand side of this equation, 7 and 2 are absolute mathematical
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constants, G is the universal gravitational constant, and M is the mass of the sun. Thus
the only thing on the right hand side which involves a particular planet at all is the 3/2
power of the long axis of the ellipse r) + r,. Thus the period of the motion of a planet is
proportional to the 3/2 power of the long axis of the ellipse. This concludes our derivation

of the second and third laws of Kepler.
The derivation of the first law is also possible using quite elementary methods but is
not possible within the space of this article.
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Follow-up problem:

Show that the path of the planet is a closed curve. (Note: This is a special property of

. . ) const. e~
the inverse square law; it is not true, for example, if the force has the form F. —

Method: Use equation (21) to write %—f— = T_Lz

The angle Af in going from r = 7y to r = ry is given by

r2

df L L dp
A= [ g = ——dt=/ e o
dt r2 n TE{E)

But % = VEH;I;V/(T —ri)(ra — 1)

"

L /r2 d
v2H J., r/{r—ri)(ry = 1)

so that A8 =

Use the form

] dz - sin_l( br + 2a )
zva + br +cx? vV—a Vb — dae

and the identity 2Hr 7, = L? to establish A = .

Explain why A6 = 7 means that the orbit is a closed curve.

® ok o K

* This article appeared in Parabola over 20 years ago. John Blatt was Professor
of Applied Mathematics at this university from 1960 to 1084. Sadly, John died in Haifa,
Israel in 1990,
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