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IF IT FITS --.7
Peter Brown*

In experimental science in past eras data was collected from an experiment and some
relationship between quantities in the form of equations was sought. In this article I wish
to introduce to you three different methods of the technique known as curve fitting.

The first method, which is only approximate, is called - --

Line of Best Fit:
Suppose we look at the maximum amount of a certain substance that will dissolve in

1 litre of water at a certain temperature.

Temperature (°C) Amount of substance (gm)

62 115
63 118
64 121
65 125
66 129
67 132
68 136

If we graph these numbers with amount of substance as our y-axis and temperature
the z-axis, we see that the points lie approximately on a straight line.

Our problem is to find the ‘best’ straight line to describe the data.

First some theory. Suppose we have points (z1,¥1), (%2,%2) ", (Tn,¥n) and try to

find the line y = mz + b which is close to these points.
l::i.l:_! ¥ o= mx = b

A

/ lxl.kl]
= X
’f

Suppose (z;, k;) is a point on the line and also lies on the same vertical line as (z;,¥;)

one of our given points. It is not hard to see that the square of distance between (2, 9)
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and (x4, ki) is (; — k;)*. This gives some measure of the closeness of (zi,yi) toy = ma +b.
In order to ensure that our line is the best one we look at the sum of all of these squared

distances from each of our given points to the line, and calculate

S=m-k)P+@~ k) + -+ (yn — ka)?
= (y — k;)? (1)
=1

we now try to make this as small as possible. We know that (zi, ki) lies on the line
y=mz+ b s0

f:,-=m3:,-+b

Substituting into (1) we have
T
$=2 (v —mwi—b)
i=1

S5 is a function of two variables m and b, Using calculus (unfortunately university level
calculus), we can show that § is smallest when
1 L1 T
b=— = 5
[Tl
=1 1=1
and

n X [ b n .
Ei:] LTilti — i=1 e

These equations look formidable but are not too hard to apply.

=

Referring back to our table of temperatures and amounts, we can calculate the fol-

lowing table:

Temperature Amount
62 115 7130 3844
63 118 T434 3969
64 121 7744 4096
65 125 8125 4225
GG 129 8514 4356
67 132 8844 4489
68 136 9248 46 24
Bl 458 Yyi =876 Ty =570390  Ta? = 20603
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Here n = 7, so our equations become

b= %{876 — 455m)

and
o 57039 — 4555
N 29603
solving for m and b we get
m = 3.54
b~ —104.68

So our line is approximately

y = 3.54x — 104.68

You can check by substituting (z;,:) into the equation to see how close the line is.
If you found all the computation tedious, then take heart, since most modern calcu-

lators have all this built in.

If your calculator has buttons marked (z,y), a, b then putting the calculator into

statistics mode we enter the = and y values by pushing 62 | (z,y) | 115 | DATA | etc. After

all the scores are entered we push [@] and then | b] and the line is y = bx + a. The button
marked [r] gives some idea of how closely the points fit the line. If r is close to 1 then the

points are close to the line.

Quadratic Interpolation
Suppose I give you three points in the plane (not lying on a straight line), say
(1,3), (2,9) and (3,17). Can you find a parabola of the form y = az? + bz + ¢ on which
these points lie? Obviously one way to procede is to substitute each of the points to get
3=a+b+c
9=4da+2b+c
17T=% +3b+c
This system is not hard to solve but with more complicated points it 15 very tedious.
Morcover we would like to get a “formula’ for the quadratic passing through 3 general

points {x1,¥1 ), (x2,42), (v, 43).
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To do this we must ‘cook up’ a quadratic with the right property. Let f(x) be a

quadratic and write
Ha) = g1(2) + ga(2) + ga(2)

where g;(z) is a quadratic.

We want g,(2) to have the property that
91(1) = 3 while g;(2) = 0 and ¢;(3) = 0

One guess is
(z = 2)(z - 3)
(1-2)(1-3)

This gives ¢)(2) = ¢,(3) = 0 and g¢,(1) = 3 since the factors cancel.

gi(x) =13

Similarly put
s ol =1}z -3)
B
this gives ga(1) = g2(3) = 0 and ¢4(2) = 9.
Finally put

galz) = 17%:—-;;;:—::—22—}} with g3(1) = g3(2) = 0 and ¢5(3) = 17

Hence (after simplifying the demoninators)

) = 5@ =2 = 9) = oe = 1z - 3) + Lo - 1) - 9

You should check that f(1) = 3, f(2) =9 and f(3) = 17-f(z) can be further simplified to
Flzl =22+ 8z =1,

Now for our general formula for the quadratic passing through (=y,y1), (z2,¥2), (23, ys).
Put

(x —x3)(@ — z3)
(21— 22)(z1 — 23)

n(z) =mn
Check that g)(z2) = g)(23) = 0 and g1(z1) = 1 (again the factors will cancel): go(x) and
g3(x) are constructed similarly, giving

(2 —@2)(T — z3) " (¥ — a1 )(x — 3) (=1 )(= — x2)
(1 — 22 )2 — 23) Jz(-!-‘z — 3 )(®2 — x3) 2 (X3 = @) )23 — z5)

fle)=w
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This is certainly an example of ‘creative cooking’.

The method (and formula) given above is called Lagrange interpolation and can be
extended to higher degree equations. However as you see it gets messy. For higher degree
problems we use instead - - -

Newton's Formula: We need some new notation. Define z'™*) (read “z falling factorial

n”) by

2™ =z(z—-1)--(z=n+1)

For example
2 = z(z - 1)

23 =gz - 1)z —2)
etc,
and define Af(z) by Af(z) = f(z + 1) — f(z).
You can prove by induction that Az!™ = nz(®~?) for example
Ar® = (2 + 1) -2

=(z+ Da(x —1)— z(z — 1)(z - 2)

=3Jz(z -1)

= 3z'2,
For those of you who know some caleulus, you should compare this with E{i—{x“) =nz""'.
We can extend to powers of A by defining, for example, A? f(z) = A(Af(z)) and so on.
So A?2(3) = A3s'D = 6z(V)

Now suppose we have a polynomial of degree 4 say.
f(z) =az? +b2® +ex® +dz+e
This can be written in the form
flx)= Az 4 B 4 C2® 4+ DV L E

The problem is to find 4, B,C, D and E in terms of f(0), Af(0), etc.
Clearly E = f(0). Applying A to both sides we get:

Af(z) =442 4 3B 4 2020 + D
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So Af(0) =D
A% f(z) = 1242 + 6BV 4+ 2¢

So
y 1
Af(0)=2Cor C = A f(0)
We can continue the process to get

B %z’_‘f’f{(}) ik %;ﬁ.*f(l]}

Hence we have

4 3 ' 2 i
= ‘ﬂ‘_i;(_”lxm " %@xtzr i &_?%@ru} ¥ é%.@im + £(0)

In general if f(z)isa polynomial of degree n then, using induction, we ean show that

T n—1
Flz)= %@‘Ttnl o %__j;!:}?_}z(n—n o é{#}lmm + f(0)

We will now see how to use this formula to find polynomials to fit data.

Suppose we wish to find a polynomial to fit the points
(0,0), (1,2) (2,20), (3,90), (4,272), (5,650).

We construct a table of differences

. fz) Afle)  AM)  AM(z)  Alfz)  ASf(a)
0 0 2 16 36 24 0

1 2 18 52 60 24

2 2 70 112 84

3. 90 182 196

4 272 378

5 650 .

* each entry for Af(x) is given by f{e + 1) — flz) ep. 182 =272 - 90.
The top row of the table gives the value of F0), Af(0), A?F(0) ete.

Hence our polynomial is

2r 3
flz) = £(0} + éLf‘:m’c + o ”DJ:L'M + El_gl[ﬂx(fi) 4 &45(0}5”

TR
2¢ 1623 3623 9474
Sl R s

=2z +8z(x - 1) + 62(z — 1)z — 2) + af{zx — 1}z — 2)(z — 3)

21



which simplifies to f(z) = 21 + 2*.

As a final example, we will find a formula for
P42ttt

Let f(z) =12 +22 +... +2?
flO)=10
fHyy=17=1
f2y=1"+2"=5
f(3)=124+22+32 =14
fl4)=1*+22+32+4* =30
5 =14 P 54315 =55
We will assume that f{x) can be written as a polynomial of degree 3. This assumption

is not obvious but we will see that differences of order 4 and higher are 0, and so our

assumption will be reasonable.

flz)  Af(z)  A(x) Af(z) Alfz) Af(=)

E

0 0 1 3 2 0 0
1 1 4 5 2 0

2 5 9 7 2

3 14 16 9

4 30 25

3 55

2

3|m[3} =+ -i—:r{,r - l}+%—ﬁ:($— 1)(z —2) which simplifies

1 3
So f(z) = I]+-1!z+ 2!;1 +
o

fliz)= %J.‘l:l‘ + 1)(2x + 1)

whenee

; o
12+22-|—---+n‘!zaﬂ{n+1j{2n+1)

Functions which are not polynomials can be approximated by polynomials using this

method.
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