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POLYNOMIAL INTERPOLATION
Bill McKee *

INTRODUCTION

Interpolation is the process of putting a curve of some sort through a series of points.
For example, suppose we took temperature measurements every hour on the hour but
then realised that we needed to know the temperature at 2.35pm. What would we do?
One method commonly used is linear interpolation which involves drawing a straight line
between the two points nearest to 2.35pm. Thus, if the temperature at 2pm was 20° and
that at 3pm was 24° our estimate of the temperature at 2.35pm would be 20 4 (24 —
20) x 35/60) = 22 1/3°. In this calculation we have used only the information contained
in the measurements taken at 2pm and 3pm. One might suspect that a more accurate
answer might be obtained by somehow incorporating the information contained in the
measurements made at other times as well, for example 1pm and 4pm. How are we to do

this? Polynomial interpolation is one such method which we shall deseribe jn this article.
THE PROBLEM

Suppose we have measured some function f at the (n+1) different points zo, 2, - z,,.
These points are often called nodes. That is to say, we have the (. + 1) pairs (zy, f(xo)),
(z1, f(#1))s+ -, (%n, f(zn)) which we may plot on graph paper if we wish. We now want
to draw a curve which passes through all these points. Expressed mathematically, we are
seeking a function ¢ such that g(z;) = f(z;) for i = 0,1,2,---n. For # z; we then use
g(z) to estimate the value of f(z). Clearly, there are an infinite number of such functions.

For example, if g; is one such then g, defined by
g2(z) = gi(z) ta(z —zo}(z — 1)+ (2 — )

has the property that ga(z;) = g1(z;) = f(z;) fori =0,1,2,--- . n. Here, a is any constant.
We could also replace a by any continuous function, sin{z? + e*) for example. So we have
to be more specific and say precisely what type of function g we want. Polynomial interpo-

lation takes g to be the polynomial of lowest possible degree which passes exactly through
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all the points. Since we have (n + 1) pieces of information contained in our measurements
we would expect that our polynomial would have to contain (n + 1) coefficients and so be

of the form g(z) = ag + a1z + -~ + anz".

Thus, for two points (n = 1) a straight line would do, for three points (n = 2) we
would need a quadratic, for four points (n = 3) we would need a cubic and so on. 5o, in
general, g would be expected to be of degree n. However we should note that three points
just might happen to lie on a straight line, four just might happen to lie on a parabola

and so on. Hence, we would now expect that g would be of degree at most n.

There are three problems to be addressed. First, how do we know that we can always
construct our interpolating polynomial g? Second, how do we construct g? Third, how do
we know that there are not other polynomials of degree at most n which will also do the

trick, in other words: is g unique?
THE LAGRANGE POLYNOMIAL

We will now construct the required interpolating polynomial. For each of the nodes

2, we define the elementary Lagrange polynomial Li(x) by

Li(z) = H{{—__% (1)
= :

where Hb,— means the product bgb;bs -« - b,. Observe that in (1) we miss out the term
i=0
i = k in the factors on the top and bottom line. Thus Li(z) is a polynomial whose degree

is exactly n. Further, Li(z) = 1 since the top and bottom lines are then identical and at
any of the other nodes z; for j # k, Li(z;) = 0 since there will then be a factor (z; — 2;)

on the top line. In symbols
0 forj#k
Lieg) = { 1 forj=£&.

We construct Li(z) for each of the nodes z4 for £k =0,1,2,---n. Each is a polynomial of

degree n. We now form the function

pa(z) = ) flze)Le(2)
k=0
=f(Iﬂ)Lﬂ(x]+f($l)Ll($)+"'+f($ii)Ln(I) (2}
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which is the sum of (n + 1) polynomials each of degree n. Thus p,(z) is a polynomial of
degree at most n. We say ‘at most n' because, if the values of the f(z;) are just right, the
coefficients of 2™ might add up to zero. For example 2(2? + 2+ 1)+ (22 — 62 + 4) — 3(z2 +

10z + 1) is a polynomial of degree 1 not 2. Further,
Pn(zo) = fzo)Lo(zo) + f(z1)Ly(xo) + - - f(@n)Ln(x0)
= 1f(zo) + 0f(a1) + - + 0f(xn)
= f(20)
since Dizg) =0 for i % 0. Similarly plzd = flad for i =0,1.9, -<-n.

Thus pa(z) is a polynomial of degree at most n which passes exactly through our (n+1)

data points. It is sometimes called the Lagrange form of the interpolating polynomial.

We have thus proved that the required polynomial exists by demonstrating explicitly
how to construct it. This sort of argument is sometimes called a constructive proof in

mathematics,

There is still a problem however — how do we know that there are not two or more
such polynomials; the others being constructed by some other techniques’ before the? If
there were, which one would we use? This problem is readily resolved. For, suppose gy(z)
and gz(z) were two polynomials of degree at most n which both passed exactly through

the points (x;, f(2;)) for i =0,1,2,---n. Then g3 defined by

ga(z) = g1(x) — ga(x)

15 also a polynomial of degree at most n which has the value 0 at the (r41) nodes z;. Since
a non-trivial polynomial of degree n can have at most n distinct zeros, this is impossible.
Thus ga(x) must take the value 0 for all + which means that ¢,(z) = ga(z) for all z. We
have thus shown that g is unique and so is given by p,,. This is called a uniqueness proof

in mathematics.
AN EXAMPLE

Find the polynomial of lowest possible degree passing through the points (0, 1), (1.1},

(2,2) and (4,5). Herezg = 0,2, = 1,22 = 2 and 23 = 4. We first construct the elementary

19



Lagrange polynomials using (1)

_(z=1)(z -2}z —4)

Lal(=) = (0 —1)(0 — 2)(0 — 4)
- (z — 0z —2)(z—4)
BEp= 1-0)1-2){1-49)
_(z=0)=z—-1)(z—4)
b= (2-0)2-1)2—-4)
Ly(z) = (z -0z — 1}z —2)

i -) L~ 1)(4—~2)
Thus, using (2),
p3(z) = 1Lo(z) + 1L (z) + 2L2(z) + 5L;3(x)
= .-+ (much algebra)

1 _
- E(_:ﬁ 4927 — 8z + 12).

DISCUSSION

We have shown how to construct our interpolating polynomial. The main problem
with the Lagrange construction is that if we add one or more new points to the data
set, the whole process has to be done again from the beginning since all the elementary
Lagrange polynomials will be changed. There is another way of constructing pa(x), the

Newton form, which partially circumvents this problem, but that's another story.

There is a more fundamental problem however. That is that a polynomial of degree
n may have up to (n — 1) maxima or minima. Loosely speaking, it may have many
oscillations. Although our p,(z) is constrained to pass exactly through the data ponts,
it may exhibit large oscillations elsewhere which are unlikely to be representative of the
actual, but unknown, function which we have measured only at the nodes. The problem
here is that we are requiring one polynomial of high degree to represent the data. In some
circumstances this is unwise and it is preferable to use a succession of different low order
polynomials. For example we could just draw straight lines between the data points. This
is just linear interpolation between the nodes as discussed carlier. A better choice, widely
used in computer graphics, is to use cubic polynomials leading to what are called “cubic

splines” which I hope to discuss in a later article.
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