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FROM PYTHAGORAS TO ELLIPTIC CURVES
Peter Brown*

There are few problems in ‘elementary’ mathematics which have not been solved. By
‘elementary’, I suppose I mean ‘explainable to the person on the sireet’. Fermat’s Last
‘Theorem’ is probably the best known of these, but there is another not so well known

problem which dates back to the ancient Greeks and still has not been completely solved.

It is obvious that a right-angled triangle with sides 3, 4 and 5 has area 6. Now reverse
the problem. Suppose I give you a positive integer, say 5, and ask you to construct a right
triangle with rational sides whose area is 5. After some labour, you will find that a right

triangle with sides 13, 62, 62 will do.

Any positive integer N which is the area of a right triangle with rational sides is called
a congruent number. Clearly 5 and 6 are congruent but it is shown by Fermat and Euler
respectively that 1 and 4 are not congruent numbers. The big question, which the Greeks

unsuccessfully tried to answer is: When is N congruent?

With the decline of learning in the West, much of the Greek mathematics passed to

the Arabs, who reformulated the problem algebraically in the following way.

Can we find three rational squares in arithmetic progression with common difference

N7 For example, with N = 6, three such numbers are
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To see the relationship between the two problems, suppose we have a right triangle with

i . ab . ) .
rational sides a, b, ¢ and area == N, and consider the three rational squares
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Looking at the differences between successive terms,
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so this sequence is an arithmetic progression with common difference N. Conversely if
z— N, z, £+ N are three rational squares in arithmetic progression then we can write

- N =u?, z=1v% z+ N =w? with u,v,w all rational.

Putting a=w—u, b=w4+u, c=2v
we have o + 8% = (w — u)? + (w+ u)? = 2u? + 2uw®
=2(z-N)+2(z+N)=4z = 4% = ¢

e+t =¢t
ab (w—u)w+u) w'-u® (z+N)—(z-N)

and —

5 = 2 2 2 =

thus giving us the rational sides of a right triangle with area N.

2 2
For example: The Pythagorean triple 3,4, 5 leads to the arithmetic progression (l) i (E) :

2 2
7y 2 2 2 17\ 2
(E) with N =6 and (%) : (%3:) , (ET) , with N = 30, gives the triad (5,12,13).

The above calculations show that the Greek problem and the Arabic problem are
equivalent, but unfortunately, this new problem was no easier to solve than the original

one and the Arabs made little real progress on it.

Elliptic Curves: Suppose we have our three rational squares in arithmetic progression

with common difference N. We can write them as
z—N, z, z+ N; =z arational square.
Now since these are squares, so is their product, call it y?, so
y? =(z— N)z(z 4+ N)=z> — Nz,

The curve given by y> = z° — N2z is called an elliptic curve. (Don’t confuse this with an

ellipse!) It’s graph is drawn below:

22



e -
-NL/ N X

y2=11'3‘—N21'

This gives us another 1 — 1 correspondence (well, almost!) between the sides of a
rational right triangle of area N and points (with non-zero co-ordinates) provided the
denominators of these co-ordinates are even; and the z-coordinate is a rational square. I
will call these points elliptic points. If we can find elliptic points we can work backwards

35) lies on y? = z® — 36z, so this yields

to get the triangle. For example the point (1—-, =

2 2 2
1 7
the arithmetic progression (5) i (g) : (E) , which in turns gets us back to our 3,4, 5

iriangle.

The problem, however, of finding elliptic points seems worse than the original problem!
It does, however, allow us to show that if there is one elliptic point (corresponding to one
triangle), then there are infinitely many of them. To show this, we draw a tangent to the

curve from P(zq,ye) and see where it cuts the curve again at Q.

Y
P

L9

If you have studied implicit differentiation, you will be able to show that the slope of

. 3z - N? g
the tangent at (zg,yo) is —2y-—, so the tangent has equation
0
3z — N2
o (B
Yo
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We now have to solve this with y? = =3 — N%z which is somewhat unpleasant, but when

a2 4 NTYP
wg(es + IV ) . Now zg is a double root of

we do, we get a cubic whose constant term is

4y3
the cubic so if the roots are zg, o, z; then the constant term is simply the negative of their
2 212
i + N S & 3 . :
product. Hence the third root is z; = -(":'—2) which is a rational square with even
Yo

demoninator. From this value we could determine yy, to give a new rational point Q(z1,v1)
on the curve. We could then calculate Q'(z;,—y1) on the curve (see diagram!) and repeat
the process as often as we like. (It is not obviously clear that we won’t eventually get back
to P at some stage, but in fact we never do). We see then, that if we can find one elliptic

point, we can find infinitely many of them.

Example: The elliptic curve 4> = z* — 36z has elliptic point i (%, %—?—) . (I got this

from the 3,4,5 triangle).
3z% —-36 1299

Differentiating implicitly, y' = at P. So the equation of the tangent

2y 140
at P is
35 1299 25
=3+ (%)
> ,_ 1229 6005
140 112

2
- . 2 " 5 5 :
Substitute into y? = z* — 36z, gives a cubic with constant term — (5101[:; ) 1% 245 a

double root, so the third root is

| _ laa2401
' 719600
We don’t really need y; at this stage, but if your calculator can stand the strain, you can
172 9
show that y; = %g;— Using z; and working backwards we get the right triangle
. . 7 120 1201
with sides 10 7 70 and area 6.

As you can see the arithmetic is fairly complicated, and I have still not answered the
big question as to when N is congruent. The most recent result, that [ am aware of, is
due to J. Tunnell (1983) who made the following remarkable claim:

Consider the equation 2a* 4 b + 8¢* = N, with a,b,c integers and N an odd positive

integer.
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If the number of non-negative integer solutions to this equation with ¢ an odd number,

equals the number of solutions with ¢ even, then N is congruent.

Examples: If N = 65 2a? + b? + 8¢c® = N has solutions
(,b,¢) = (4,5,1), (2,7,1), (4,1,2), (2,5,2)

so there are two solutions with ¢ odd and two with ¢ even and indeed 65 is congruent as

the following triangle shows:

IO‘I

[1 Area = 65
12

Example: If N = 157  2a® + b + 8¢ = N has no integer solutions so the conditions

are trivially satisfied, and again, N is congruent with ‘simplest’ triangle given below.

22440351 770433696992455751 30906748631 6094847204 |

B9173372689288595880255351 7896716357001 6480830

GRO32GHARTEI643505121 7540
41134051922771614%383203

411340519727716149383203
Example: N =3 21666555693714761 309610

2a® + b2 + 8¢? = N has solutions (1, 1,0) so 3 is not congruent.

No proof has yet been found for Tunnell’s remarkable formula and so it remains a conjec-
ture, and so the problem remains unsolved, although we have come a long way from the

time of the ancient Greeks.
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