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Find all positive numbers z which are such that (1 + —-) >1—-— for every
ne n
positive integer n.

The diagonals of a convex quadrilateral divide ¢ into four triangles whose areas
are 1,2,3 and a unjts (in some order). Find all the Possible values of 4.
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By selecting a sufficient]y large positive integer n, 1 — = can be made arbitrarily
close to 1. Hence ¢ cannot be less than 1, but any valye greater than or equal to
1 satisfies the condition.

Answer: z i 1

In the figure, let v, w, a be the areas of the triangles AXD, CXD, AXB, and
CXB respectively.
Note that u/y = AX/CX (since the areas are
proportional to the base lengths if the heights
x are the same), Similarly w/a= AX/CX.
A B ig= vw .
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A game is played with 100 piles of pebbles, containing initially 1, 2,3,---,99,100
pebbles. A move consists in choosing some of the piles and removing the same
number of pebbles from each of them. For example one possible first move would
be to remove 10 pebbles from each pile contai ning ten or more, thus leaving piles
of sizes 1,2, 3, .. 8,9,0,1,2,... gp. The object of the game is to remove a]] the
pebbles from the board in the smallest possible number of moves,

How many moves are needed? Give proof,

There are many different strategies which remove al] the pebbles in seven moves
For example:-
Ist move:- Take 50 pebbles from piles with more than 50; leaving

.2 5 48,50;1,2,- .- 49 50
2nd move:- Take 95 pebbles from piles witl, more than 25; leaving

DB 08 21---,_35,-1.3,_--:,35;1,2,---,:»:,.
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3rd move:- Take 13 pebbles from piles with more that 12; leaving 4 empty piles.
and 8 piles with each of 1,2,- -, 12 pebbles.

4th move:- Take 6 pebbles from piles with more than 6; leaving 16 piles with each
of 1,2, -6 pehbles.

5th move:- Take 3 pebbles from piles with more than 3; there are now 4 empty
piles, 32 piles of size 1, 32 of size 2, and 32 of size 3.

6th move:- Take 2 pebbles from piles with two or more: there are now J6 empty
piles, and 64 with one pebble.

7th move:- Take the last pebble from the 64 piles not yet empty.

We must prove that the pebbles cannot be removed in 6 moves. Suppose after
the n th move, we can find k, piles of the same size, but not (kn + 1) equal piles.
For example kg = 1 since at the start no two piles have the same number of
pebbles. For the sequence of moves given above, we have k, = 4, since after the
second move we can find 4 equal piles (in many different ways), but not more
than 4.

We claim that, for any sequence of moves knyy < 2ky. This is clear, since the
kn41 equal piles after the (n + 1)th move can be placed into two groups; those
which have been left unchanged by the (n + 1)th move, and those which have
been reduced at the (n + 1}th move. Neither of these groups can have contained
more than k, piles.

Since kg = 1 it follows that &y < 2, ky < 2%; k3 £ 2% and so on. Hence
ke < 2° = 64. Hence there cannot be more than 64 empty piles after 6 moves.
(In fact, taking the argument a step further, let E, denote the number of empty
piles after the n'* move, so that Eg =0, Eng1 Eood kot By 2

B0t B4+ E; <0+1+42+2% elc.

Wence By <1+2+224--+2°=63.)

Given the numbers A, B and ' we are to solve for z,y and z the simultaneous

equations
ay+zr+y=4

gz4+r+z=28
yz+y+z= C.
Find all the solutions when A = =7,B =14 and C = —11.

Find a set of values for A, B and € which is such that the equations have no
solution.

The equations can be rewritten

(z+ 1 y+1)=A+1
(z+1)(z+1)=B+1
(y+Dz+1)=C+1

Multiplying yields [(« + 1){y + Pz+1)P =4+ 1B+ 1)C + 1)
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i) fA=-7,B=14,C=-11,(A+1)(B+1)(C + 1) = 900 = 302

Sz 4+ 1)y + 1)z + 1) = +£30.

+30

C+1

+30
y-l-l——m—i?,y——l, or —3

+30
z-l—l—m-—:l:ﬁ,l’—-—ﬁ, or +4.

There are two solutions:= (z, y, z2) = (—4,1,—6); or = (2,-3,4).

z+1= =+3r=-4, 0or +2

i) Since perfect squares are never negative, for solutions to exist (A + 1B +1)(C+
1) = [(z+1)(y + 1)(z + 1)]* must not be negative. (Also, if it is zero, at least one
of z + 1,4+ 1,z + 1 must vanish, so at least two of A+1,B+1,C + 1 must be
zero),

For example there is no (real) solution if (4, B,C) = (-2,0,0) orif (4, B, C)=
|:'-1, U‘, I}}

4. i) How many positive integers z satisfy the equation

6=l
100 11 '
(Here [z] denotes the largest integer less than or equal to z).

1) Given a positive integer n, how many positive integers x satisfy

[:c] = = 1
nl [n+1 '
Ans. i) Let ¢ be the quotient and r the remainder when z isdivided by 11. i.e. z = 11g+r

x r T
0 < . Then — = — tht[—-:r= i
where 0 < r < 11. Then 1 q+ b so tha = q

so that [%] = ¢+ 1 if and only if 1 <

r qg+r
Now 0= ¢ + 10
10<g+r <20
For each of the eleven possible values of r (viz. 0,1,2,.-.,10) there are 10 different
integers ¢ having 10 — r < q < 20 — r, Hence there are 110 different pairs (q,r),
each giving rise to a different value of z. (eg. ¢ = 3,r = 9 corresponds to
r=11lg+r =42).
Hence there are 110 different integers = satisfying the equation.

q;;lr < 2eiie,

i1} Similarly, let 2 = (n + 1)Q + R where 0 S R < n + 1.
T Q+R T i ;
: = - = L= = f3 £
Then L1+ ] (), and = Q+ = [n} [n+1] +1 if and only i
SR ,
(M <2 ie m—R<Q <M — R For éach of the (n + 1) different
n
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i)

Ans. 1)

i)

A= -7,8B=14,C=—11,(A+1¥B + 1)(C + 1) = 900 = 302

oz + 1)y + 1)(z + 1) = £30.

r+l==——=43z=-4, or +2

y+l=—-——==x2;y=1, 0or -3

4+ 1l=——=2452=-6, or +35.

There are two solutions:= (z,y,z) = (—4,1, —6); or = (2, -3,3).

Since perfect squares are never negative, for solutions to exist (4 +1)(B+1)(C +
1) = [(z +1)(y+ 1)(z 4+ 1)])* must not be negative. (Also, if it is zero, at least one
of r + 1,y + 1,z + 1 must vanish, so at least two of A+ 1,B +1,C + 1 must be

ZETO).
For example there is no (real) solution if (4, B,C) = (—2,0,0) orif (4, B,C) =
(—1‘0,0}

How many positive integers z satisfy the equation

T T
) = )+t
(Here [z] denotes the largest integer less than or equal to z).

Given a positive integer n, how many positive integers z satisfy

2) =[]+

Let g be the quotient and r the remainder when z is divided by 11. i.e. z = 11g+r

I T i
<r<il Lo =] =4
1.'.rh«=:n=:ﬂ[i)_w ral Ehen T q+ Thas that T q 5
[f T r
Now-l—lj-=q-|-ilﬁ so that %]=q+1ifandon]yif1£%{2;1&

10 < g +r < 20.

For each of the eleven possible values of r (viz. 0,1,2,---,10) there are 10 different
integers q having 10 — 7 < ¢ < 20 — r. Hence there are 110 different pairs (g, T},
each giving rise to a different value of z. (e.g. ¢ = 3,r = 9 corresponds to
v =1lq +r = 42).

Hence there are 110 different integers x satisfying the equation.

Similarly, let z = (n + 1)Q + R where 0 < R<n + 1.

T x Q+ R i 3 ;

= — e e = = 1
Then [n 1] @, and = Q+ = [n] [n 1] +1 if and only if
1< 2+ < 2 ie. n—R < @ < 2n— R. For each of the (n + 1) different

T
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possible values of R there are n (non-negative) integers Q in this range. These
n X (n+1) different pairs (Q, R) correspond to n(n+1} different values of z which
satisfy the equation.

5. A Dist of positive integers z,, 1, - yTn,+-- satisfies the condition

Tn = Tnoy + [/Tu_; for all n > 1.

(Here [z] denotes the largest integer less than or equal to z.)
For example, if z; = 19, the list commences

V8,28, 87,30 BT 60 3 v,

Prove that for any z; the list contains perfect squares.
Ans. See Senior 3 for answer.

6. Sixty seven points lie inside a regular hexagon with side length 2 centimetres.
Prove that a circular coin of radius 1 centimetre can be placed to cover at least
twelve of the points.

Ans. Join the centre 0 of the hexagon to the mid points U, V, W, X, Y, Z of the sides.

E 2D Since AOAB is equilateral, QU 1 AB. There-
Y w fore a circle on diameter OB passes through U
F ¢ . (and V). Let Zy,T2,--+,T¢ be the numbers of
z ¥ points lying inside or on the figures QUBV,0VCW, -.
Av b respectively.
Then o1+ z2+ --- + 26 > 67. (The equality sign applies if none of the given
points lies on UX, VY or W Z). Hence the largest of z;,-- -, z¢ is at least 12. For

definiteness let us suppose that the figure has been labelled so that z; > 12. Place
the coin so that a diameter coincides with OB. Then it covers 12 of the points
unless one of the points is at O (and z; = 12). But then since the 67 points are
all inside the hexagon, none is at U,B or V and the centre of the coin can be
shifted by a minute amount towards O to cover this point without uncovering
any of the other eleven.
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SENIOR
1 The set S consists of all positive integers which are factors of at least one of
1992, 6'°, 18°.

How many numbers are in S.

Ans. The divisors of 18%(= 2831%) are the numbers 2°3% where ¢ = 0,1,2,--+,8, and

b=01,2---,16. There are 9 x 17 ways to choose a and b, giving 153 different
elements of S.
In addition 2°37/ is a factor of 6'°(= 2'°3!%) not already counted, if ¢ = 9 or
10 and f = 0,1,2,--+,10. This gives another 2 x 11 = 22 elements of 5. Since
1992 = 83 x 2% x 3, its only factors not already counted are 83 x 2k x 3% where
h=0,1,2 or3, and k = 0 or 1. This gives another 4 x2 =8 elements of 5.
Hence altogether S has 153 + 22 4 8 = 183 elements.

1

Through a point inside a triangle of area A are drawn three lines parallel to the
sides of the triangle. These lines partition the interior of the triangle into three
parallelograms and three triangles. If the triangles have areas Ay, A; and As,

prove that
VA VA + \/:‘-1:= VA

Ans. If A denotes the area of a triangle, APQR, A = -;—PR. PQsin £LP = kPQ* where

s
k= %F}; sin £ P.
Likewise, any triangle similar to APQR has its
R area given by k€%, where £ is the length of the
_ side corresponding to P@, since ZP, and the ra-
& tio PR/ PQ are both unchanged by similarity.

In the figure, the triangles APQR, AUV X, AXY Z

E
F >
X and AFXE are equiangular because of the par-
P //.\'\ v Xa allel lines, and therefore similar. If their ar-
> eas are A, Ay, A, Az, respectively, then from the

above

VA = VEPQ, VA = VEUV, VA; = VEXY, and VA; = VEFX.

o Ay 4+ /Ay + /A3 = VEUV + XY + FX)
= VE(UV +VQ + PU)
(since opposite sides of parallellograms are equal)

=VkPQ = VA.

3. A list of positive integers

o R PR L T
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i1}
Ans. i)

ii)

satisfies the condition

Iu::l:n_l—I‘[\p':ﬂ“_]_l forall n > 1.

(Here [z] denotes the largest integer less than or equal to &}
For example, if z; = 19, the list commences

19, 23,27,32,37,43,49,- ..

Prove that for any x, the list contains perfect squares.
Find a number 2; which is such that the first perfect square in the list is z4p.

It will be sufficient to show that at least one perfect square appears, since then
there will be another square in the continuation of the list starting at the next
term. Note that if z is a term in the list such that k? < z < (k + 1)2, then
[Vz] = k, and the following term is z + k.

Now suppose (m—1)? < z; < m? (where m > 2). Let r; be the first member
of the list such that z; > m?. If z; = m? we are finished, since we have found a
perfect square. Otherwise z; =m?*+§wherel <§<m-1 (since z; exceeds
zj-1 by only m — 1). Now Tip1 =z +tm<m?P+2m—1< (m 4+ 1)? and
Ti+2 =2jptm=2;+2m=m?+2m+ & = (m + 1)? 4 (6§ — 1). This analysis
shows that for any m, there are always two terms of the list between m? and
(m + 1)% and if the smaller of them z ; exceeds m? by &, the term z j+2 exceeds
(m+1)?byé—1. H6-1>0, i 4 exceeds (m+2)? by (6 — 2), and so on. It is
clear that after § pairs we reach a term in the list (z;425 in fact) which exceeds
a perfect square by 0. i.e.

Ti26 = (m +6)%.
Taking j = 2,6 = 9 in the above,
z3=m> 49 (where 9 < m — 1)

and Tgp = (m + 9).
The smallest permissible value of m is 11. Taking this

S22 =130 =2, + 10 (since 10% < z, < 11%)

.21 = 120 is one possible value. (In fact the smallest). Other possible values of
Ty are r9 — (m - 1)

zy ={m?+9)— (m—1) =m? -~ m + 10 (for any m > 11)

At a shooting gallery there are n targets in a row. A customer knocked over all the
targets in 2 shots. At no stage was any target left standing after its neighbours to
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the left and the right had both been knocked over. In how many different orders
could the targets have been hit?

Ans. 1. Let N, denote the required answer. Obviously Ny = 1; No = 2. Also N; = 4,
since the targets ABC can be hit in the orders 4, B,C; or B, A,C;or B,C, A; or
C,B,A.

The last target to be hit must be at one end of the row. If it is at the left
hand end, there are N,_; orders in which the other (n—1) targets can be knocked
over. Similarly, there are another N,—1 ways to hit the targets if we end at the
right hand target. Hence foralln > 1 Np = Ny + Nopc1 =2 x Npg.

Hence, since N; = 1, we obtain N, =2""! foralln > 1.

2. Alternatively, suppose the first target to be hit is the kth target from the left

hand end. There remain k — 1 targets to its left and n — k to its right. The next

target to be hit must be either target k + 1, or target k — 1, which we denote by

R and L respectively. In fact, the order of hitting the remaining n — 1 targets

can be described by a sequence X; X3 -+ Xy where k — 1 of the X's stand for
LL---L RR---R
(k—=1) (n—k)
would correspond to the order of hitting the targets by working along to the left
hand end of the row first, and then working to the right hand end. Since there
are "~1C,_, ways to choose (k — 1) of the n — 1 places for the L’s, there are
exactly that many different orders for hitting the targets starting with the kth.
Adding for k= 1,2, n,

L, and the others stand for R. For example, the sequence

N,="1Ci14+" ' C +" Car + - gl
=(1+1)*"" (by the binomial theorem)
i 211—]

5. S is a set of non-zero numbers, no two equal. If two members of S are selected at
random, their product is equally likely to be positive as negative. The probability
that they are both positive is the same as the probability that if one member of
S is chosen at random it is negative.

How many numbers are in 5.

p(p—1)
2

ways to choose 2 negative numbers, and

Ans. Suppose p of the numbers are positive, and n negative. There are ways

n{n — 1)
2

p X n ways to choose one of each. Since the product of two numbers is equally

likely to be positive as negative, we obtain

to choose 2 positive numbers,

P(P-;* 1) e ”'(n‘)— 1) =p X n. (1)

e e

plp — 1)J,(p+n}(p+ﬂ—1)

The probability that both numbers chosen is positive is —— - :
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and this must be equal to

p+n’
plp—1) _n
CpHn)p+n=-1) " ptn A
From (1) Hp =1} =nldp—my 1)
and from (2) Pp=1)=n(p+n— 1) (3)

Hence p4n -1 =2p—-n+1,givingp= 2n -2,
Substitute in (3). (2n — 2)(2n — 3) = n(3n - 3)

Sn=lorn=6

P=2n-2=0or 10.

The wording of the question does not make sense if § contains only 1 number.
Hence n = 6,p = 10 js the only solution, § containing 16 numbers.

6. Two marathon runners are training on a circular track marked with lanes. They
both run clockwise at g steady speed of 5 metres/sec, one in an outside lane
which has a radius of 100 metres, the other in a concentric lane with a radius of
96 metres. When the distance between them is changing most rapidly,

i) at what rate is it changing?
i} how far apart are the runners?

Ans, Suppose we measure time, ¢, from the moment when the two

runners are closest together, their positions ob-
viously collinear with the centre of the circles,
O. Let 6, (radians) be the angle at O travelled
by the outside runner A after ¢ seconds, and 02
the corresponding angle for the runner B on the

inside track. Then 1008; = 5¢ and 966; = 5t so
1

. TN o .
S —5(96 i e (radians/sec).

Hence the angle subtended at O by the line segment AR is changing at a

constant rate of radians/sec. Therefore

96
their distance apart after ¢ seconds is exactly the

same as if 4 was stationary at his position at
t = 0 while B travelled along the inside lane at

a constant speed of 96 x ( ) meters/sec.

5 x 96

(1e. at .2 m/sec.)

Now it is obvious in this situation that the distance between A and B changes
most rapidly when B is moving either directly away from (or else directly towards)
A’s position.
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Ans.

and

i.e. when the line AB is tangential to the smaller
circle. By Pythagoras theorem, the distance be-
tween the runners is given by /1002 — 962 = 28
metres, and it is increasing (or decreasing) at the
rate of 0.2 m/sec.

The sum of the lengths of the twelve edges of a rectangular box is 24 metres, and
the sum of the areas of the six faces is 18 square metres. What is the largest
possible volume of the box?

Let the dimensions of the box be z,y, z metres. We are given 4(z +y +z) = 24
and 2(zy + zz + yz) = 18. Hence we want to find the largest value of V = zyz
where z,y, z are positive numbers satisfying

t+y+z=26 (1)
zy+zz+yz=9 (2)
From (1) and (2}
ye=9-2(y+2)
=9—z(6 —=z)
== 3)?.

Remembering that for positive numbers y, z

2
y+z
<
yz_( 2 )

(6 - 2)°
4

we have (z — 3]? < which simplifies to = < 4.

So we want the largest value of V = z{yz) = z(z—3)? when x ranges between
0 and 4.
EITHER

Since (z(z — 3)? = 4 — (4 — z){z — 1)? it is clear that the largest value
achievable by V (for z < 4) is 4, obtained when z = 4 and y = z = 1 (and also
whenz=1,y=4, z=1L z=1, y=1, z =4).
OR

Use caleulus to clarify the graph of V = z(z — 3)* = #* - 6z? + 9z for
0<zx<4.

dV

=322 _-12xr+9=0whenaz=1lorzr=3.
dr

Since z(x — 3)? is 0 at 3 and positive elsewhere in [0,4], 2 =3is a minimum.

Y

z
= x'j-l‘x - ‘j‘-"—

Since % 6r — 12 is negativeat z =1, z =1
is a maximum.
Therefore the graph of ¥V in 0 < 7 < 4 looks
5 like the sketch. Since V(1) = 1 x (—2)? =‘4 and
& I = :r V(4) = 4 x 12 = 4 the largest value of V' is 4.
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