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SOLUTIONS OF PROBLEMS 852 — 860

Q.852 Ifa;,a,,--- @n are positive real numbers and @ + 83 + -+ ay =1 prove that

n 2 2
1 2 2
ap n

k=1

ANSWER. The problem has been corrected here. It appeared with the inequality in the

wrong direction.
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Then f(z) =24+ — 4+ 2 + . . > 0 for all z. Hence the graph of f(z)
o4 {c—a)t
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Is concave upwards in 0 < < ¢. Thus f(z) can have at most one stationary

point in this interval, and if there is one it must be a minimum. Since Fiw)=

2 2
2r — - e Ae—z)+ m, f'(g] = 0. Hence f(r) has a minimum value at g
r 1 ; e -
Now consider E (ak L ;-) with E ar =1, all ag > 0.
k
k=1 k=1

If any two of the numbers ay are differe;t, say @i < ay, set ¢ = a; 4 a; and
observe from the above that a smaller value of the sum is obtained if each of
@i, aj is replaced by BC—

Hence the minir;um value of the sum can be obtained only when all the

) 1
numbers a; are equal, in fact all equal to —,
T
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Q.853 a) Show that for every positive integer n
1
2(vn+1-/n) {—\/_—{E(ﬁL\.z‘n—l}
n
b) Find the largest integer less than
k=1 \/E
ANSWER a)
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Q.854

o (Vr+ vn—1) 2 2 1
Similarly 2 (VR — VA — 1 ! = -
milacly 2 (VA= VA=) (e E=) T Va1 VAt VR VA
b)
10000 10000 1 100000
1+22(”""’+1"/E){Z;T—<1+ Z‘z(\/‘*—uv’k—l)
k=2 k=1 k k=2
10000 1
1 — 2v/2 + 2v/10001 < Z—<1—2ﬁ+2\/1m}00
.‘.‘=1\/—J::
o000

Y =B R 100 }: oo 100

k=1 \/E
Therefore the required answer is 198.

The number 4 can be expressed as the sum of one or more positive integers in 8
ways: 4, 3+1, 2+2, 2+1+1, 1+3, 14241, 14142, 1+1+1+1. Note that
ihe order of the summands is regarded as significant in this count; e.g. 24+ 1+1
and 14+2+1 and 1+ 1+ 2 are all counted. Find a formula for the number of
different ways in which an arbitrary posi tive integer n can be expressed as a sum

of positive integers.

ANSWER. Rayman Yan (Randwick Boys Technology High School} gives two solutions:-

1) Let N, denote the number of ways to express a positive integer n in the form
n = a; + az + -- -+ ax where k> 1, and a;,---,ax are positive integers. (1}

Of the N, ways, the number with ¢, = m (=1,2,-n—1)1s Nn—m (the number
of ways of expressing n —m in the form as + - -+ + ax). Obviously a; =n gives

one extra solution.
o N,=Np1+Naa+-+ N +1. (2)
Replacing n by n — 1
Nyi=Npo+Npat---+1 (3)

Substituting (3} into (2) yields Ny = 2No—y for all n.
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Since N} = 1. we now have

- Wy Nua Ny
Np=— e R
» Np-1 N2 Ny :
— an=1

2) For each of the N,, different solutions of (1)
I+ai4+ar+-4ap=n+1

and

(ﬂ|+1}+62+"‘+a,ﬁ;=n+1

are all different ways of expressing (n + 1) in the required form.

i.e. of the N4, expressions of the required form which sum to n + 1, there
are N, having the first term equal to 1, and another N, having the first term
greater than 1. Hence N, = 2N, for all n, and it follows as in the first method
that N, =271,

Q.855 The diagram shows a convex pentagon with all diagonals drawn.

They intersect in 5 points, which divide the diagonals
into 15 line segments. The diagonals partition the in-
terior of the pentagon into 11 regions. Given a convex
n-gon with all diagonals drawn, no three of which are
concurrent, find

(1) how many points of intersection are there:

(11) into how many segments are the diagonals divided;

(iii) the number of regions into which the n-gon is partitioned by the diagonals.

ANSWER (i) For each point of intersection, the two intersecting diagonals have as their
end points a subset of 4 of the n vertices, Conversely for any selection of 4

vertices 4, B, C, D in order around the perimeter, only the diagonals AC and BD
nin—1}n—-2)n-23)
4! ’

intersect. Hence the number of intersections is "Cy =
the number of different ways to choose subsets of 4 vertices.
(ii) First we count the number of diagonals. From each of the n vertices there

are (n — 3) diagonals, which connect it to all the vertjces except itself and its two
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Q.856

¥ (rn—3) .. i
LB bl {2 ) diagonals altogether. (The denominator

is necessary because each diagonal has 2 ends). We now consider the effect on

neighbours. Hence there are

the number of segments of adding the "Cjy points of intersection. Each of these
increases the number of segments by one on both the diagonals that intersect.

Hence the final number of segments must be

- -3
"-——‘_,—-I-? %" C4=n_hlﬁ_}tﬁ+('n_1){n'"2n

- ll?n[n — 3)(n® = 3n +8)

(iii) For a connected “map” in the plane having V vertices and E edges, the
number of regions R into which the plane is divided is given by Euler's formula
V — E + R = 2. (The unbounded “exterior” portion of the plane is included in
counting R). Hence the number of regions inside the n-gon is given by 1+ E—-V
where V =n+"Cyand E=n+ Tl;jn{n —3)n? —3n +8). (In the count of V' we
have added the n vertices of the n-gon to the intersections inside. Similarly for
E, the n sides are counted as well as the segments inside the n- gon).

Hence the number of regions is 1+ %ﬂ{ﬂ —3)nt—3n4+8)- 21—4n(n —1}n—
2)n — 3).

1
This simplifies to ﬁ-(n" —6n° + 23n® — 42n + 24)

-

;—4{71 —1)(n — 2)}(n® = 3n + 12).

The senior form has three classes, all with twenty students. Each student is
acquainted with forty other seniors. Prove that there is at least one set of three

mutual acquaintances, one of whom is in each class.

ANSWER. Since a student can have at most 19 acquaintances in his own class, he must

have at least 21 in the other classes. Hence no student can have no acquaintances
i one of the other classes. Let n be the smallest number of acquaintances of
any student in a class other than his own. Let z, in class A, be a student with
exactly n acquaintances in class B, one of whom is y. Now in class C,x has at
least {21 — n) acquaintances, and y has at least n acquaintances (because of the

definition of n). As there are only 20 students in class C', there must be at least
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Q.857

one student (z, say) in C' who is acquainted with both z and y. Then z,y and z

are a set of mutual acquaintances, one in each class.

a,b,e,---, k is any set of n positive numbers,

1
Let,S=a+b+---+kand:r=5+i+,.,+

b
Prove that ST > n?,

Ll I

ANSWER. It is convenient to change the notation, replacmg a,b,- -+, k by

@i, t=1,2, --- . n. Then § = Za. and T' = Z-——
i=] =1 Sim
By coincidence this exercise appeared as part of Question 8 on the 4-unit

H.5.C. mathematics paper in 1991. We give two workings, neither of which was
supplied by any candidate in that examination, where the wording encouraged a

proof by mathematical induction.

1<%

L.
(1) If @ and b are positive, and s = a + b, then — ~E= 2 2 = since on multiplying
5

through by sab the inequality is seen to be equnva]cnt to (a + b)? > 4ab, wh:ch
15 immediately deducible from (a — b)* > 0. Thus the smallest value of ; + 3’
(given s), is obtained when a = b — ;.

Using this, if the positive numbe;s a; are varied keeping S fixed, the smallest
possible value of T must have all of the a; equal; since if a; # a j a smaller value

of T would be obtained by replacing both of them with &%‘ﬂ_

Therefore Ty, is obtained when @ =a3 =--=gq, =

2 |

2

nd T = (2) = 2.

i=1
Therefore ST > STin = n?.
1
(2) The 1nequa1|t} l +-2
: b~ a+4+b
(a+ f_.-}[—- + Ej 2 4. Hence £ + % = 2 for positive a, b.
a

proved above implies



Q.Sﬁs

In the second sum there are clearly "C; terms, and by the above caleulation,

none of them is less than 2.

(n—1)

oo 8T 2n+"Cg><?.=n+n 5 D=

Comment: S/n = A, the arithmetic mean of the numbers, and n/T = H, the
“harmonic mean” of the numbers. Our working has proved the theorem that
A > H for any set of positive numbers. If instead one starts by quoting this
theorem, the result follows immediately; a course of action taken by Jonathon
Kong (Sydney Grammar School). The better known theorem that A > G (the

geometric mean) can be used to give another quick solution, since if P = the

product Ha,-, the result follows from S/n = VP and T/n 2 1;‘{‘/?
1=1

Vi o
Let ay = V2; a:=\/§ﬁ; a3 :\/‘Eﬁ S an=x/§ﬁ‘
where there are n v/2’s in the tower. Show that the list of numbers aq,ag, -, an. """
increases steadily, but that no matter how large n is, an < 3. Can you determine

approximately how large ay is when n is very big?

ANSWER. If z >y and a > 1, o =¢* ¥a¥ > L.d?

Hence if an > Gp—1, Gnt1 = V2t > V2" = a,. Since az = \/ﬁ""f5 >
\/5] = a,, it follows that as > ay, then as > a3 and so on indefinitely.

Again if a, < 3 then a,4y = V2t < v’ﬁs = 2/2 < 3. Since a; < 3 it follows
that a, < 3 for all n.

We have shown that the list of numbers a, 1s steadily increasing, but is
“hounded above” by 3. Obviously the numbers must eventually get very close to
some “limiting” value, {. Taking n very large n V2" = ani1., both a, and anti
are very nearly equal to €. In fact £ must satisfy \/"Ec = {. There are two obvious
values of ¢ which satisfy this equation, viz. { =2 and £ = 4. Since all values of a,
are less than 3 they cannot get very close to 4. In fact they do get very close to
9. (If you know enough calculus, you can show that the function f(z) = V2 —x
has just one stationary point; f'(z) = 0 only when z = —E——E’n (i) . Hence

fn 2 in 2
there cannot be more than the two obvious solutions ¢ = 2, or 4 of f(z) =0.}
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Q.859 In AABC, AB = AC. The bisector of ABC meets AC at D. If BD+ AD < BC

find the angles of the triangle.

ANSWER. Rayman Yan (Randwick Boy’s Technology High School).
BC

having first proved that AB = Seos ZABC writes:- -
Let ZABC = ZACB =20, AB =
2cos 28

S LBAC =180° — 44, .. ZADB = 36
In AApD, Sn8 _ sin(180° —46)  sin34

AD BD L
sin @ _ sin(180° — 46) _ sind 4 sin(180° — 44) a3 o _ a+c
AD BD - AD + BD e T ™4

. sinf + sin(180° — 46) _ 2sin 36 cos 26
. AD + BD - BC

but BC = BD 4 AD (as given). Therefore sin § +5in(180° — 48) = 2 5in 36 cos 26.
R.H.S. = 25in360cos20

i 8 5K (%[sinﬁﬂ + sinﬁ]) (since sin Acos B = %[sin(.‘l + B) + sin(A4 — B}])
= 8in 58 + sin #
. 8inf(180° — 46) + sin# = sin 58 + sin §

sin{ 180° — 46) = sin 56

180° — 48 = 58
96 = 180°
8 = 20°

Therefore the angles of the triangle are 40°, 40°. 100°,

Q.860 Two congruent circles intersect at 4B8. Point P lies on one circle, and @ on the
other. M, N are the feet of the perpendiculars from A to the lines B and B@Q

respectively. Prove that the mid points of AB, P@) and MN are collinear.

ANSWER. The three figures cover the possibilities that P and Q both lic on the ma jor

arcs on AR {Fig. 1) or both on the minor ares (Fig. 3), or one on a major arc,

one on a minor arc (Fig. 2).
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Since ZAND and £ZAM B are right angles, the circle on
diameter AB passes through both M and N. Thus the
perpendicular bisector of the chord M N passes through
the centre of that circle, the mid point of AB.

Construct PS equal and parallel to N@, so PNQS5 is
a parallelogram and the mid point X of PQ is also the
mid point of the other diagonal N'S. We will show that
ZSMN is a right angle, so that the circle on diameter
SN passes through M. Then it will follow that X

too lies on the perpendicular bisector of M N, and the

desired result is established.
Sinee AB is a common chord of congruent circles, the angles ZAPB and

£ AQB subtended at the circumferences are either equal, or supplementary, and

in every case ZAPM = LAQN

MP _MP AMcot ZAPM _ MA
"PS T NQ ~ ANcot ZAQN AN’

Using this we can now deduce that AMPS ~ AMAN since the included angles
/MPS and ZM AN are equal in every figure. (In figs. 1 and 3, both angles are
supplementary to ZM BN the first because PS5 | BQ, the second because M BN A
is a cyclic quadrilateral. In fig. 2
/MPS = /MDBN (alternate angles)
= /M AN (since MBN A is cychic).).
From the similarity of these triangles, ZP MS = ZAMN. It follows that ZSMN =

ZAMP =1 right angle, and the proof 1s complete.
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