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CALCULATING EXPONENTIALS AND LOGARITHMS

Bill McLean*

The exponential function = — e* and its inverse, the (natural) logarithm function z =
Inz (z > 0), are arﬂongst the most important in mathematics, arising as they do in many
different applications. At school, we learn some of the properties of these functions, such
as the identities
gt = ¢! (1)
and

In(zy) =lnz +Iny, (2)

but are not usually told how numerical values of e* and Inz can be found. Consequently,
you just have to trust your caleulator when it tells you, say, that 2% = 7.729..., and
in bygone days you would have had to trust your table of mathematical functions or
your slide rule. What if, however, you were perverse enough not to trust these? How
could you calculate exponentials and logarithms using only a pencil and paper? Here, the
term “pencil and paper” is intended metaphorically: the calculation should involve only
simple arithmetic operations — additions, subtractions, multiplications and divisions —
that could in principle be done by hand.

I am going to describe methods for calculating e and Inz based on the identities
(1) and (2). Similar methods have in fact been used by some electronic calculators and
computers, although manufacturers of these devices usually do not reveal details of the
algorithms employed.

Unfortunately, the methods involve a certain amount of cheating: it is necessary to

know the values of In(10) and of the numbers aq, a1, a2, ... defined by
my = o1+ 1077) for j = 0. (3)

In a future article, I will explain how to calculate these numbers by pencil and paper; for

the moment you can just use your calculator (!) to check that

In(10) = 2.3025 8509.

* Bill is an applied mathematician at the University of New South Wales
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Here, I have used the symbol = to indicate that the decimal expansion has been rounded
to the number of digits shown. The first few of the numbers a j are

ap = 69314718,

a; = 09531018,

az = 0099 5033,

az = 00099950,

ay = 0001 0000,

and you will notice that

dp > a) >ag >--->1(

because In r decreases when = decreases, and because Inz > 0 for z > 1. It is also possible
to prove that

a; < 1077 and a; < 10a,;4y for all j > 0; (4)
in fact, aj ~ 1077 once j is larger than 1, and the approximation gets better and better
as j increases,

Let f(x) be either % or Inz. Our overall strategy 1s to approximate z by a number z
with the property that f(z4) can be evaluated using only simple arithmetic operations.
Since x & 24, the continuity of f ensures that f(z) ~ f(z4), but it is important to quantify
the errors in these approximations, a task for which the following terminology is useful.
In general, if + = £, then the number |& — x| is called the absolute error in # as an
approximation to r, whereas | — z|/|z| is called the relative error, because it tells you the
size of the error relative to the size of z. (If = 0, then the relative error is not defined.)

For example, in the approximation 752-351 & 750, the absolute error is
|750 — 752-351| = 2.351 = 2,

but the relative error is only
|750 — 752-351]  2:351
752:351 T 752:351

or, in other words, only 0-3%. For numbers of moderate size it does not matter much

= (0-003,

whether you look at absolute or relative errors, but for numbers that are either very large

or very small it is usually more meaningful to consider relative erTors.
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EXPONENTIALS

We are now ready to discuss the calculation of ¥, where z may be any real number,

positive or negative (or zero). The first step 1s to find the unique integer NV such that
Nln(10) < z < (N + 1)In(10), (5)

and to compute the quantity

Tp — T — Nln[l{l),

so that
z=NIn(10)4+ro with 0 <rp <In(10). (6)

A moment’s thought shows that our pencil and paper criterion is satisfied, given the value
of In(10). All we have done, in effect, is to divide z by In(10) to obtain a quotient N and a
remainder rq, something that can be achieved, if = >0, by repeated subtraction of In(10)
from z until the result is less than In(10). If z < 0, we instead use repeated addition
of In(10) until the result is greater than or equal to zero. Also, it is worth pointing out
that (5) is equivalent to
108 2e® o 107,

so already at this point in the calculation we know the order of magnitude of e, i.e., we
know its value to the nearest power of 10.

The next step is to divide ro by ao to obtain an integer quotient kg and a remainder ry,

so that

re = kgao + 71 with 0<r <ayp.

We repeat this procedure d times:

™ =k1ﬂ.1 4+ 12 with 0<re <ay,

rg=kgag + Tit+1 with 0<rge < ag.
With the help of (4), we find that kja; =r; — 74 <r; <aj_y < 10a; and so

0<k; <10 forj>0.
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Substituting the expressions for rg, r1, ..., rg4 into (6), one after another, we find that

= NI(10) + kyag +
= NIn(10) + koao + k1a; + r;

= NIn(10) + koag + kyay + -+ - + kgag + ras1,

and therefore

T==x4+ T4 with 0 < raq1 < ay, (7)
where z4 is defined by
Tg= Nln{lU) + koag + kyag + -+ 4+ kgag.

The identity (1) now plays its crucial role, and at the same time the reason for the mys-

terious definition (3) of a; is revealed. Indeed,
e’ =1+1077,
S0
% = WP (14 D1 10N o (1 20,
How accurate is ¢ as an approximation to €*? In view of (7), we have

|e“ _ Erl B |ex¢ _ B$¢+ru+|[ = e'r‘“‘i{er""' . 1} <o _]= 10-d’

le*] - eTatriat:
which means that

e’ = e®® with relative error less than 10—,

You might like to check that you understand the method by trying it out in the case when
¢ = 2.045 and d = 3. You should find that N =0, kg =2, k; = 6, k; =8 and k; = 7. so
that

g = 2ag + 6a; + S8ag + Taz = 2-04475

and

et = (14+ 131 +107)%(1 + 1072)°(1 + 1073)7 = 7.72726.

By comparison, e = 7-72915, giving an absolute error of about 0-2 x 102 and a relative

error of about 0-2 x 1073,
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NATURAL LOGARITHMS

Now consider the calculation of Inz, where z may be any positive real number. (Re-

member that Inz is only defined for > 0.) This time, the first step is to find the unique

integer NV satisfying
107! < 2 <107,

and then to let #p = 10"z, so that
=10t  with 107! <t £ 1.
The second step is to find the unique integer ko such that

g=ko=l 4. <2~ Fo,

In other words, 2%ty < 1 < 2%+1t, so we just have to calculate 2to, 2%t,, 2%y, ...

(8)

until

arriving at a number, namely 2ko+1 that exceeds 1. Having found ko, we let t; = ko,

so that
to=(14+1)%t with (1+1)'<t<L

The next d steps give us, in the same way,
ty =(1+1071 )"k, with (A=) tety €1,
tg=(1+10"%) kty,  with (1410777 <tgn 1.
Notice that 1 > ¢;4; = (1 +1079)%¢; > (1+1079)% (1 +10'77)7}, so

(1+1079% <14+10"77,

Taking logarithms, k;a; < a;j_;, and it then follows from the second inequality in (4) that

0<kj<10 for0<j<d,

just as was the case before in the calculation of e”.
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Substituting the expressions for ¢y, t,, ..., t4 into (8), one after another, gives

= 107(1 4 1) %oy,

= 1091 4+ 1)%(1 4 1071 )*gy

=10M(1+ 1)7%(1 + 1071) "5 ..o (1 4 107 9)~katyy,,

and so

&= Zqldgp1 with l:l + lﬂ-d)_l <ldy =1,

where

24 =10Y(1+ 1)7%(1 +1071) %1 ... (1 4 10~9) e,

Using the functional identity (2), and recalling the definition of a; in (3), we see that

Inzg = NIn(10) — kpap — kyay — -+ — kgay.
Futhermore,
IInzs —Inz| = |Inzy — In(zatep)| = ln(i;_:'_l) < In(14107%) = a4 < 107¢,

which means that
Inx ~Inzy; with absolute error less than 1074,

As an example, try taking r = 13.412 and d = 3. You should find that N = 2 k=1
ky =6, k; =5 and k3 = 1, so that

2 =10%(1+ 1)73(1 + 107171 4+ 1073)~%(1 + 10~*)~? = 13.41353

and

Inzy = 2In(10) — 2ay — 6a; — S5a; — a; = 2-59626.

By comparison, Inx = 2.59615, giving an absolute error of about 0-1 x 10~
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A feature of the calculations described above is that they involve repeated multipli-
cation by 1+ 1077, an operation that only requires a shift of the decimal point and an
addition: for example,

(1+4+107%) x 74625 =  7-4625
+ 0:0074 625
= T7-4699625 = 7-4700.

Contrast this with the multiplication of two general d-digit numbers @ and b. Each of the
d digits of @ must be multiplied by b, and the d results added with appropriate shifting of
decimal points to yield @ x b. In the interests of computational efficiency, it 1s desirable to

minimise the use of such long multiplications, and likewise of long divisions.

Rhombitruncated Dodecahedron
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