Parabola Volume 28, Issue 2 (1992)

PRIME NUMBERS AND SECRET CODES
David Tacon

“The problem of distinguishing prime numbers from composite numbers and of resolu-
ing the latter into their prime factors is known to be one of the most important and useful
in arithmetic. It has engaged the industry and wisdom of ancient and modern geometers to
such an ertent that it would be superfluous to discuss the problem at length - -- The dignity
of the science itself seems to require that every possible means be explored for the solution

of a problem so elegant and so celebrated.” C.F. Gauss (1801).

In the last issue, see “Prime numbers” we discussed such problems as:
(i) how do we check whether or not a 200 digit number is prime;
and

(ii) how do we find the prime factorization of such a digit.

The answers at first sight were very surprising. It turns out to be the case that
while it is relatively easy to check for primality it is virtually impossible to find the prime
factorization of a randomly chosen 200 digit number. This is reflected in the fact that the
largest Mersenne number so far factored is Mspg = 25°9 — 1 whilst the largest Mersenne
number currently known to be prime is Mysgss = 2759839 _ 1. The magnitude of this
result hits home when we realize that we would take about 86 pages of Parabola to
print this number’s decimal expansion. The tests used in checking the primality of large
Mersenne numbers provide excellent exercises for testing new supercomputers and this
was exactly how the primality of Mis6539 was discovered. Scientists working on a Cray-2
supercomputer at the Atomic Energy Authority Harwell Laboratory were keen to test its
reliability. David Slowinski and Paul Gage of Cray Research suggested looking at one
hundred Mersenne numbers that might be prime and success was achieved on the 85th
number the computer tried. The Cray 2 took just 19 hours of computation before it was
proved that Mysessg is a prime. We might mention here that the Cray-1A supercomputer
is reported to have undetected random errors which occur at a frequency of rate about one

for every 1000 hours of computing. The main cause of these errors is due to background

27

radiation from alpha particles. It is impossible to physically shield the memory cells —
silicon chips — from this radiation so the memory must be designed under the assumption
that at least some of the cells are denoting 0 when they should be denoting 1, and vice
versa. Consequently error correcting codes must be build into the computer’s hardware.
These are mathematical elaborations of the error detecting codes used on ISBN's : see

the article by David Angell in this issue.

We are going to discuss a different type of code: a secret code or cipher. John Lox-
ton discussed the traditional types of secret codes in the 1982 and 1983 issues of Parabola
(see 18(3), 19(1) and 19(3)). The basis for the cryptosystem we wish to investigate is the
following idea. Suppose we choose a pair of large primes p and ¢ and form the product
n = pq. (By “large” we mean, say, 100 digits long.) We then know something that no one

else can discover: the factorization of n.

Before we can properly understand how we can exploit the above idea we need two
more results from number theory. Fortunately neither is very difficult to understand and

we can explain them here.

The first goes back to the Greeks and is called the Euclidean algorithm. It provides
us with a recipe for finding the “greatest common divisor” (a,b) of two positive integers
a and b. Using this notation (12, 18) = 6 since 6 is the largest, or greatest, integer which
divides both 12 and 18. Similarly (14,15) = 1, (50,125) = 25 and so on. When (a,b) =1
we say a and b are relatively prime. You might wonder why we need an algorithm at
all when we can so easily read out the greatest common divisor from knowledge of the
prime factorization of the numbers, e.g., if a = 2°.3.7°.432.61" and b = 2°.3°.7°.43* then
(a,b) = 2%.3.7°.43%. There are a number of reasons but certainly a very practical one from
our viewpoint is because we cannot effectively find the prime factorization of very big
numbers, This afterall is the basis of the idea we are trying to exploit. The Euclidean
algorithm, by contrast, is easy to compute! There is also an unexpected payoff from the

algorithm which will be more than useful to us.

We begin the Euclidean algorithm by dividing b into a. This allows us to find integers

28

q1 and r; with
a=bq +7; where0<ry <bh

The point is that the remainder ry is less than b. The key to understanding why the
algorithm works is the observation that the common divisors of a and b are the same as
the common divisors of b and ry. (Keep in mind that if k divides a and b then k divides

r, = a — bgy). This means that (a,b) = (b,r;). We now work with b and r; to obtain
b=rigz+12 0<rz<n

and we continue to obtain a sequence of equations

ry=1"T2q3 + T3 0<ry<rg

Thea =Fp—3n+rn 0 <rp <rpy

Pae1 = Tndn+1
The remainders continually decrease so that eventually we must achieve a zero remainder
rne1 as we have indicated in the last equation. Since (a,b) = (b,r1) = (r1,m2) = -+ =
(ru—1,7n) and 7, divides rn_; it follows that (a,b) = rn. The extra payoff for us is that
we can trace back through the algorithm:

Tn = Th=2 —Tn-19n = Tn-2 — (T‘n_;; - Tﬂ_zqn_l)qn =,

to find integers s and ¢ such that
sat+th=r,.

Here is how this works on a simple example. Suppose we wish to find (1512,47) and
integers s and ¢ such that

(1512, 47) = 1512s + 4.

L e 1512 = 47.32 + 8
47T =8.54+1T7
=i+ 1
T=17

29

.. (1512,47) = 1. Furthermore
(1512,47) =8 - 7.1 =8 — (47 - 8.5).1
= 8.6 —47.1 = (1512 — 47.32).6 — 47.1

= 1512.6 — 47.193
so that we can set s =6, f = —193.

Our second result generalizes Fermat’s theorem. Remember in our first article that

we proved, assuming p is prime, that
a’”'=1mod p provided (a,p) = 1.

(We wrote @ = b mod n to indicate that a — b is divisible by n.) We know that this
result rarely holds if p is not prime. Nevertheless we can say something constructive in the

general case. BEuler's theorem states that
a®™ =1 modn provided (a, y)=1

where ¢(n) is the number of positive integers less than n which are relatively prime to n.
For a prime p each of the integers 1,2,---,p—11s relatively prime to p so that ¢(p) = p—1.
Therefore Fermat's theorem is a special case of Euler’s theorem. On the other hand to
calculate ¢(15), say, we can proceed by listing the 15-1 numbers 1,2,3,---,14, and then
we can delete the (5 — 1) = 4 numbers divisible by 3 and the (3 — 1) = 2 numbers divisible
by 5. We are left with 1,2,4,7,8,11,13, 14 so that ¢(15) = (15— 1)-(5—-1)—-(3—-1) =8.
Clearly ¢(pg) = (pg—1) = (¢ —1) — (p — 1) = (p — 1)(g — 1) whenever p and ¢ are prime.
The proof of Euler's theorem is a development of the proof of Fermat's theorem and we

can write it down as follows,

Let ry = 1,72,---,rg(n) be the ¢(n) positive integers less than n which are relatively
prime to n. Assume (a,n) = 1 and for each 7 let s; be the remainder when r;a is divided
by n (so 0 < s; < n and r;a = 5; mod n). Then

(i) each remainder r; must be one of the ry (if (s;,n) # 1 then (ria,n) # 1 which means
either (a,n) # 1 or (r;,n) # 1) and
(1) s; #£s;if i # 7 (if s; = s; then ria = rja mod n which implies n | (r; — r;)a so that

either r; = r; or (a,n) # 1). These two observations imply that the s; must just be

30

the r; rearranged. Consequently

rirg - rgma®™ = riamea s rymya mod n
= 5189+ S4(n) mOd 1

=riTz " *T(n) mod n.

Since (ri,n) = 1for1=1,2,---,4(n) it follows that
a®™) ={ mod n provided (a,n) = 1.
In fact it follows from Euler’s theorem that
a®M+l = 4 mod n

for all @, not just for those a for which (a,n) = 1. For the special case where n = pg we
can check this easily. If pq|a then the result is trivial so the only cases of real interest
are when a = p or a = ¢. If we suppose a = p we need show that pq|p(p"¢'{"]' — 1), or
equivalently that q[p“p*”("'” —1,0r qt(pk‘p_”)q"l — 1. But this final statement is

true since (p*P~1) ¢) = 1.

We can now explain how the RSA public key cryptosystem works. Once set up this
cryptosystem allows our agents to send us messages in code, safe in the knowledge that no

third party can decipher the code
Step 1: We generate two large primes p and ¢ which we keep secret.

As an illustration we'll let p = 37 and ¢ = 43. (Remember that if we were setting up
a realistic cryptosystem we could find prime numbers with 100 or so digits in their decimal

expansion.)
Step 2: We compute n = pq.

In our case n = 1591. (Even if p and g were large there are no serious difficulties in

carrying out the multiplication.}

31

Step 3: We choose an integer h so that h and (p—1)(¢—1) are relatively prime.

We'll let h be 47. (One simple way of ensuring the condition is satisfied is to choose

h to be a prime number greater than p and q.)
Step 4: We compute d so that dh =1 mod (p — 1)(¢q — 1)

We know such an integer d exists when h and (p— 1)(¢ — 1) are relatively prime since,

by the Euclidean algorithm, there then exist integers s and ¢ such that
sh+tlp—1)g—1)=1.

This means sh = 1 mod (p — 1)(¢ — 1) so that we can let d be congruent to s. In our

example (p — 1)(¢ — 1) = 1512 and we have already found that
1=1512.6 —47.193

so that d = —193 = 1512 — 193 = 1319. (Note that we can also write 1 = 1512(6 — 47) +
47(—193 + 1512).)

Step 5: We are happy to publish n and % but we keep d secret. At this stage
we would be wise to destroy p,¢ and (p — 1)(g —1).

We relax, confident that none will ever factorize 1591! As for d = 1319 we keep it

under guard in our office.

Why did we destroy (p—1)(g—1) but publish n = pq? The secrecy of the cryptosystem
depends on a third party, a spy, not being able to work out p and q. We have to release
n = pq to the second party with whom we are corresponding so it is no longer secure.
If ¢(n) = (p—1)(¢ — 1) and n are intercepted then our spy knows pg = n and p+ ¢ =
n—®(n)+1 and can immediately find p and q. (Afterall she can write down the quadratic

equation which has p and ¢ as roots.)
We have yet to reveal how to code an arbitrary message number m.
According to Euler’s theorem we know that, for k = 1.8 8-+

¥ = ¢ mod n for any integer .

32

But dh = 1 mod ¢(n) so that dh = ké(n) + 1 for some integer k. Consequently we know
md* = m mod n. This suggests that anyone wishing to send us a message should compute

¢ = mh mod n and send us e. We can then decipher the coded message ¢ by computing
A& = (g™ d = md* = m mod n.

The question remains as to whether or not this is secure. A spy might have discovered
n,h and ¢ and wants to discover m. She can calculate m = ¢? if she can discover d or,

equivalently, if she can solve
dh =1 mod n, given h and n.

Fortunately this is a difficult problem, essentially equivalent to factorizing n. Remember

trial and error is hardly feasible since there are so many possibilities of d to check!

Finally to complete our example let’s suppose that someone wants to use our simple
cryptosystem to send us the message m = 42. (It’s rumoured that this is the answer to the
fundamental question concerning the universe!) To transmit this answer to us in secret
they should code m as

¢ = 427 mod 1591

How do they calculate c efficiently? Remember that in a more realistic situation 47 and
1591 would be “big”. The general algorithm requires us to use the binary expansion of the

power:

47T=1x24+1x2 +1x22 +1x2+1=(101111)

so that

2 2 4 ?
4947 = ((((42)’) 42) 42) 42| 42 mod 1591

2
2 2
((1?3)‘2 42)) 42) 42 mod 1501

Il
/-—'-\..\ /.——'—h.\

9 2
((128y° 42) 42) 42 mod 1591

9 2
= ((816)*42) 42 mod 1591
= (945)* 42 mod 1591 = 816 mod 1591

33

Notice that using this algorithm we needed only 9 multiplications to evaluate 4247, Ip
general if i has o bits in its binary expansion, 4 of which are 1's then the computation of
m" requires (@ — 1)+ (8 — 1) multiplications. When we receive the coded message ¢ = 816
we decipher by caln:ulating

816'*"® mod 1591.

Since 1319 = 210 £ 98 1 95 1 92 L 9 4 | _ (10100100111); we can decipher using just

10 + 5 = 15 multiplications. We leave this as an exercise.

The RSA public key cryptosystem was invented by Rivest, Shamir and Adleman in
1978. One of its significant advantages over more traditional cryptosystems is that there
is no need to keep the “keys” h and n of the enciphering algorithm secret. In most other
systems the secrecy of the message depends upon the secrecy of these keys. This meant
that the keys had to be distributed secretly. But how? This was one of the major headaches

of conventional cryptography which has been solved by Rivest et al.

WEIGHTY PROBLEMS

1. There are 12 seemingly identical $2.00 coins. Eleven coins are of equal weight but the
one counterfeit coin has a different weight. Find the counterfeit coin with no more

than three uses of a beam balance,

Lo

We have 10 piles with 10 coins in each pile. Each coin in each pile weighs 10g except
for the coins in one pile which weigh 9g each. Find the odd pile of coins by using just

one weighing with the kitchen scales.

34

