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Q.861

ANS.

SOLUTIONS OF PROBLEMS 861-871
Each of the numbers in a list
Iy1,La,T3,""" T

is a positive integer written as usual in decimal notation.
For every n > 1

Tp = Tp-1+ Yn-1

where yn—; is the number obtained from Tn—i by writing down the digits in
reverse order. For example, if £, = 100, then z,4, = 100 4+ 001 = 101, and
Tnpz = 101 + 101 = 202.

Prove that regardless of the value of z; from some stage on all the numbers in

the list are exactly divisible by 11.

Everyone knows the test for divisibility by 9: -
ap X 10* +ag_y x 10571 4 - + a3 x 10 + ao
is divisible by 9 if and only if
ar + ag—1+-+a1 T do

is divisible by 9.

There is a rather similar test for divisibility by 11:- If ag,a1,---,ax are any
integers, then ap x 10F + ag_y 1051 4 --- 4 a; X 10 + aq is divisible by 11 if
and only if ax % (—1)}* + ag—1 x (=1)¥ 71 4---+ a1 x (~1) + a0 is divisible by 11.

(If you are familiar with congruence notation and properties, the proof of this
assertion is very short:- Since 10 = (1) (mod 11), 10" = (=1)" (mod 11) for
any positive integer r, and ax X 105 4o day X 10" +ag =ap x (1) + -+
a; % (=1) +ap (mod 11), from which the result is evident. Otherwise, observe
that successive powers of 10 are alternately 1 less and 1 greater than a multiple

of 11. With a little labour, the stated result follows from this observation).
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One immediate consequence of this test is that if an integer is divisible by

11, so is the integer obtained by writing the digits in reverse order. (Note that
a0 % (=1)F +a; x (=1 4o b oy x (<1) + a;
= (=1)%(ae x (~1)* + aucy x (=11 - 4 a4y x (=1) + ag)).
It follows ;;hat in the list if one number z, is divisible by 11, so are y, and z,4,
(= Zn +ya). So all the following terms are multiples of 11.
Note that if £, = gz % 1® 4003 ay; x 10" 4+ ag where k is odd, and the
number of digits in z, is even (= k + 1), then
Tn +Yn = (ap +ag) x 10¥ + (ap_, F+a) X0 4y
(@1 4+ ag—1) x 10" + (ao + ag).
Note that
(ak +ao) x (=1)* + (ar—1 +a1) x (=1)* 1 4 ... +
(a1 + @k—1) x (=1) + (a0 + a;) = 0,
since the first term cancels the last, the second cancels the second last, and so on.
(Because the number of digits is even, there is no middle term left uncancelled).
By the stated test we see that Tnt1(= Tn + yn) is divisible by 11.
It is obvious that the list {x,} is increasing, and easy to see that the number
of digits in , is at most one more than the number of digits in x,_;, so that a

term z, with an even number of digits must eventually appear. From the above

observations, all later terms in the list are divisible by 11.

Q.862 (i) Sketch the graph of the function flz} = f:i{:t > 0).

d 1
H = : —(f = =)
(Here énz = log, z; dx{ ne) x}
(ii) Show that the only solution of a® = % where a and b are positive integers

and a < b, is given by a = 2, b = 4.

ANS.i)

oy 1d d 1 _1 fna
f{x]—ydw{fna:)+€nmdr( )_ -

1
= ﬁ(l — fn .'I-'}.
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Q.863

ANS.i)

This is positive if 1 > fn z, i.e. if e > z and negative if 1 < én z ie. if e <z

Hence f(z) has a maximum value when = e = 2.71828, the value there
1
being f(e) = f_né_e = Note that #n z is positive if z > 1, and negative for

0 < ¢ < 1. Hence the graph of f(z) must be approximately as shown in the

figure.

(ii) If a® = b® then, taking logs to base e, béna=a fnd, f(a) =
£(b).

If f(a) = ¢, the straight line y = ¢ intersects the graph at two points, P
and Q with z-co-ordinates a and b. (Clearly ¢ must be positive since horizontal
lines below the z axis intersect the graph of f(z) in only one point). Since the
graph has only one stationary point, the maximum at = = e, it 1s clear that a,
the z-co-ordinate of P, lies between 1 and e = 2.71828, and b the z-co-ordinate
of Q is greater than e. (We are assuming a < b). Since 2 is the only integer
between 1 and e, we must have a = 2, and then it happens that b has the value

4 also an integer.
(i) Sketch the graph of the function g(z) = zénz(z > 0).

(ii) For ¢ > 0 let N(¢) denote the number of solutions of ¥ =¢, (z > 0).
Find N{¢).

o ; 2 4/ 1
(iii) Find all solutions of ¥ = ¢ when ¢ = R when ¢ = 936, and when ¢ = 7.
d d
g(z)= Znz+ z—(fn ) =£fnz + 1.
dz dx
There is a stationary point when fn z = -1, i.e. when z = =

Since ¢''(z) = % which is always positive where g(z) is defined, the graph of
g() is concave upwards.

Note also that since fn r is positive for z > 1 and negative for 0 < z <1, the
same is true of g(z). The graph of g(z) must resemble that shown in the sketch.

(We shall assume that the value of g(z) tends to 0 as = tends to zero.
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Q.864

ANS,

This is equivalent to the statement
that when y is a large positive number

A
7 i SO
y K

Either statement can be proved eas-
ily using a result called L’Hépital’s rule
which can be found in text books on the

calculus, or alternatively from the defini-

tion of the ¢n function).
ii) Note that * = ¢ if and only if #n ¢ =
z fn x = g(z).

The solutions are the z-co-ordinates of the point(s) P in which the line
y = £n ¢ cuts the graph of g(z). From the graph it is clear that if fn ¢ > 0 (i.e.
if ¢ > 1 there is only one point P, so Ne)=1ife>1.Htne< 1 there is no
point of intersection, i.e. N(c)=0if0 < c < e~t. ’
et <c<1,ie if -—% < £n ¢ < 0, the horizontal line will meet the graph of
g(z) in two peints, and N(c) = 2. Finally N(eh%) =1, sincey = —% is tangential
to the graph.

V2

iii) Since e™¢ ~ .6922, V—f lies in the range (e'Je',I}, SO N(?z

vz_ 1
2

14 .13 G V2
= —— == = —}4 t o BT —
7 (2) (4) , so the values of z satisfying x 5 arez

) = 2. In fact
1
Er

. 1 = 1
z = .SmceD'::;-(e =,N(§)=U‘

[

When ¢ = 38/9?6(:» 1), N{c)=1.

4, 4 : :
Since — /36 = (~)i, = = is the only solution.

9 3 3
In a club with 36 members any two members are either friends or enemies, and
each member has exactly 13 enemies. In how many different ways can one select

three members so that they are either all friends or all enemies.

Represent the club members by 36 points in space. Join every pair of points
by a line segment, coloured red if the corresponding members are enemies, but

coloured green if they are friends. The question can now be restated “How many
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different one-colour triangles (either red or green) have been formed?”

Let A be any one of the points. Denote by X the set of points (13 in number)
joined to A by a red line segment, and by Y the set of 22 points joined to A by a
green line. Of the **C) line segments with both end points in X, let r denote the
number which are red. Similarly let ¢ denote the number of green line segments
with both end points in ¥. Then clearly the number of one-colour triangles having
A as a vertex is equal to r + g.

Each of the 13 points in X is the end point of 13 different red lines. Of these 169
red “end of lines”, 13 have come from A, and 2 x r have come from the r red
lines with both ends in X, each of which has been counted twice. That leaves
(132 — 13 — 2r) which have their other end in Y. Similarly there are 222 — 22 —2g
green lines starting from Y which have their other end point in X. But since each
of the 13 x 22 lines joining a point in X to a point in ¥ is either red or greemn,
we deduce that 13 x 22 = (132 — 13 — 2r) + (22% — 22 — 2g). Hence r + g = 166.
Since every one of the 36 points is a vertex of 166 one-colour triangles, the total
number of one-colour triangles is (166 x 36) + 3. [Division by 3 is necessary, since
each triangle has been counted three times, once for each vertex.] Hence the final

result is 1992,

Q.865 For any triangle AABC let X,Y be points in the sides AB, AC respectively such
that XY||BC and XY is tangential to the in-
scribed circle of the triangle. (See figure).
Prove that the length XV cannot exceed §th of
the perimeter of AABC. Is equality possible?

ANS. We shall use later the result that for any

i bwe | ab 1 .
positive numbers a, b we have (?ﬁ-ljb_)? < 7 with

equality when a = b.
This follows from 4ab < dab+ (a — b)? = (a + b)%.
In the figure, @, R, S, T are the points of contact of the tangents. We have
AR = AT, C§ = CT, BR=BS, XQ = XR and Y@Q =YT. If pi denotes the

49



perimeter of AAXY, and p; that of AABC, then

P +2BC =AX +(XQ+ QYY)+ AY + 2BS +2CS
=(AX+XR)+(AY +YT)+ RB+ BS+ 8C +TC

=(AR+ RB)+ (AT + TC) + (BS + SC) = p,.
Since AAXY is similar to AABC.

XY p XY BCp
— = —, 50 that — = ———
BC  p * p3
_ 1(2BC)p,
=5 %
Using the preliminary result, with p; + 2BC = p,, we have chz"p] < % with
2

equality when p; = 2BC = 1p,.

Xy 1., ;
Hence E < 3 with equality when 2BC = %pg.
Le. Equality is attained when the side BC of the triangle is one quarter of the

perimeter.
Q.866 A 1 metre square masonry slab which formed part of a 1 metre wide path has
become displaced as shown in the figure.
A ) .
P A workman repairing the path saws off the two
B triangular pieces which project beyond the sides
of the path. Find the sum of the perimeters of
the two triangles,
F
ANS. Let @ be the angle through which the slab has turned.

If h is the perpendicular distance from the pro-
jecting corner A of the slab to the nearest edge
of the path (see fig.1) the perimeter of the over-

6|4 hanging triangle is

¢ AB+AC’+BC‘=h( 1 ot o )

cosf  sinf  sinfcosd
Similarly the perimeter of the overhanging trian-
(sinf + cosf + 1)

: where
sinn @ cos #

gle on the other side is &
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Q.867

ANS.

k is the perpendicular distance from F to the edge of the path.

(sinf + cosf + 1) (1)
sin @ cos

Now the diagonal AF of the slab has length V2 metres and is inclined at the

angle ZAFM = (45° + ) to the direction of the path. The side AM in the right

The sum of these perimeters is (h + k)

angled triangle in figure 2 is
AM = V2sin(45° + 6) = V2(sin45° cos § + cos 45° sin §)
= sinf + cosd

Hence, subtracting the width of the path
h+k=sinf+cosf —1

Substituting this into (1) gives

((sin @ + cos @) — 1)((siné + cosd) +1)
sin @ cos @
(sinf + cos8)2 — 1
sin @ cos 8
sin? @ + 2sin f cos @ + cos? 6 — 1
sinf cos @

sum of perimeters =

.
Thus (provided there is overhang on both sides of the path) the two perimeters

add to 2 metres.

Two circles intersect in A and B. P is a point inside one of the circles.

AP (produced) cuts the first circle in W, the
second in X. BP (produced) cuts the first circle
in Y, the second in Z. If WY X Z is a rthombus,

prove that the two circles are of equal radius.

Since the diagona-?s of a rhombus bisect each other at right angles, if WY XZ
is a rhombus B lies on the perpendicular bisector of WX. Hence ABWPF is
congruent to ABXP and we deduce that ZBWA = ZBXA. Since the common
chord AB subtends equal angles at the circumferences of the two circles, they are

of equal radius.
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Q.868 Twelve sentry posts are situated (not necessarily equally spaced) on the circular

ANS.

wall of a citadel. At 12 noon, a sentry leaves each post in one direction or the
other, marching at a speed which would make a complete circuit in exactly one
hour. If two sentries meet, they both about turn and continue marching at the
same speed in opposite directions,

Prove that at midnight each sentry will be exactly at his own starting post.

In fact prove that this must already be the case at 6pm.

An observer seeing two sentries just before their meeting and again just after (but
not at the critical moment) would not be able to determine if they had done their
“about turn” manoeuvre, or simply marched past each other, unless he was close
enough to recognize them as individuals. Hence at any instant the disposition of
marching (anonymous) sentries is exactly the same as if all “about turns” were
replaced by marching past. Hence after one hour there is a sentry at each of the
twelve posts, marching in the direction taken initially by the original occupant.
(%)

Now, since in fact no sentry ever passes another, the order of the twelve
sentries aroung the wall is exactly the same as at the starting time. Hence if after
the first hour one sentry finds himself at the kth post clockwise from his starting
point, all twelve of the sentries must have moved k posts clockwise by 1pm.

Of course because of (*), after the next hour each sentry will have moved
another k posts clockwise (and will now be marching in the direction taken by
the original occupant of the new post.)

In fact, after n hours each sentry will have moved nk posts clockwise. So in
twelve hours, each sentry will have moved 12k posts clockwise, i.e. k complete
circuits clockwise, and will be exactly at his own starting post.

But what about 6pm?

If in an hour the sentries have moved k posts clockwise, then the total dis-
tance marched by all sentries in the clockwise direction is k circuits more than
the distance marched in the anticlockwise direction. Suppose initially m sentries

moved clockwise and the other (12 — m) marched anticlockwise. Then the same
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Q.869

ANS.

applies at any other instant, and in one hour the total distances marched are m
circuits clockwise, and {(12—m) anticlockwise. Hence k = m—(12—m) = 2(m—6).
Thus k is an even number, so the number of posts shifted clockwise in 6 hours,
viz 6k, is already a multiple of 12. Thus at 6pm each sentry has moved a whole

number of circuits and is therefore back at his starting post.

(In the above, clockwise may be replaced everywhere by anticlockwise, or
alternatively k may be permitted to be a negative integer if the net movement of

each sentry in an hour is in the anticlockwise direction. )

Let ¢, be the nth term of the sequence defined by ¢; =1, c2 = -1,

Cp = —Cp—1 — 2Cn—3 for n = 3.

Prove that 2™*! — 7¢2_, is a perfect square for every integer n > 2.

First, some exploration. Calculate the rows in the following table (in which

d2 =2~ 72 ).

7 8 9110 I

—
[
L]
N i
o
[=>1

n

Cn 1}=1]|=1| 8|=1| =5} 7| 3|=-17|11} 23
(23*{*1_

e ) [-] 1| 9|25) 1| 121|81|169| 961 | 25 | 3249
dn —|-1|-3} 6| 1|-11] 9] 13|-31] 6| &7

In calculating d,, we have chosen the signs as shown because we have noticed
that by so doing the sequence {d,} obeys the same recursion rule as {c,} ie.
dp = —dp—1 — 2dpn_2. (1)
This may lead us to look for a relation between d,, and the terms in the sequence
{en}, and if we are lucky enough we might notice that dn, = 2¢n + a1 for
n=2. 1l (*)
If so, we can attempt to prove by mathematical induction that AL TR, =

(2¢n + en-1)? for n > 2. This is true for n = 2, obviously. If it is true for n = k
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Q.870

ANS.

then
(2ck41 + ¢k )? = (2(—cr — 2¢k—1) + 1 )? = (—cp — dcp_; ¥

= cf + 8ckcr_y + 16¢f_;

= l4ci_, — Tcp + 2(dc} + depep—y +¢2_,)

= 14c_, — Tck +2(2ek + ¢k )?

=idef =P ot =74 )

R TCEL
This completes the induction step (i.e. it is true for n = k + 1 whenever it is true
for n = k) so the desired result is true for all n > 2.
If we are not lucky enough to notice (*), we can still succeed, proving by induction
the proposition:-
“di = 271 _ 72 | and 2"*! + ddpda—1 = —28cp—16p—2" for n > 3, the first
part of which is the desired result.
(Here d,, is defined by d» = —1,d; = -3,d,, = —d,—; — 2d,,_3). We omit the
details.

For integers 1 < k < 1992 denote by s; the sum

FT k41 k+2 1992

Determine sy + s7 + 83 + 85 + -+ + s2g4,.
When (ay +az + - - + a,) is squared, the result is a] + -+ + a2 + 2a;az + 2a1a3 +
2018, + 2005+ + 2azan+ o F2apjan = Y Al 42 Y axap

= 1<k<t<n
If all of 51,82, -+, s34, are expanded in this way the resulting terms in s, + 52 +

33+ 8% 4 -+ + 8199, can be regrouped as

1 ! —1 1=1 1
where T} =?+ Zt” -[—QZ (Zr_t)
i=1

For example,
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1 _ 1 1 | I . -
Ty = i (appearing in s;) +(E + = + el + = (appearing in s?,sg,sg,si) +
1 1 1.0 1 1.1 11 2
i T B N D ) R : E e = d
2[{1 + 5 + 3)‘1 +(2 + 3]4 + 34] (product terms = with t = 4 and r < ¢
appearing in s3,s2, and s3.)
Note that T. —1+4>< - +2x—1{l+‘?x1+3xl]—2
i £= 1 JE 217" 3 3

In fact, for any t

T _1.+txl+g1:(l+...+ 1 )+(1+...+L)+.“+__1__
t 2t |\1 #=1) 2 f=1 £

1

t

I

1 4231 1 1 1 : Y
+;+?[I+2X—+3X*+'+*+(i—1)xm] _'t_+?+?{t_1)—2'

] 3
Therefore the required sum is Ty + T + -+ + Tio02
=24+24...42=2x1992 = 3984.

Q.871 The polynomial p{z) has degree n and
p(k) = 3% for k =0,1,2,---,n.
Find p(n +1).
ANS.
po=3"=1= p(z) =1+ zp,(z) where p;(z) is a polynomial of degree (n —1)
p(1)=3=1+1p(1) =3= pi(1) =2 = pi(z) = 2 + (z — 1)pa(2)
= p(z) = 1 + 22 + z(z — 1)p2(z) where py(z) is of degree (n —2).
p(2) =3 = 1+2x3+2 pa(2) =9 = 2pe(2) =4 = 22
= pa(z) = i—f +(z — 2)ps(z)

2

= plz): 1+ %x + 22—!:1:{3: — 1)+ z(z — 1)(z — 2)ps(z)

where p;(z) has degree (n — 3).

p{3}=33$1+2><3+§ x 3 % 2 + 3lpa(3) = 3% = ps(3) =§
= ps(z) = :23—? +(z = 3)ps(z) = (z - 2)
=>p($}=1+21—T+-2£1(m-1)+
+ Za(z ~ (e ~2) + 2lz — Dz = 2)(z - pu(2)
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where py(2) has degree (n — 4). Recognising the pattern we
mial of degree n defined by

consider the polyno-

P(I)‘1+—~2+ z(zx 1}22 m(I—I)o-?:'(rﬁ-r-i—]}E,. .+;r[x——1}..;x—n+1]2n

If k is any integer < n.

k 1
Plky=1+— 2+—(2—)'ﬂ o ﬂk—k—}ﬁ—22*+ﬂ+ -4+ 0.

(the zeros resulting from the factor (z — k) in any terms for r > k).

P(k) = 1 +% 012 4% (9% ook o 0b
= (1+2)* by the Binomial Theorem
= 3F

Hence P(z) is indeed indentical with p(z).

cpn =14 82y (BEDn, (mtD)-2,
1 2! n!

=1 +1‘l+] e +n+l 0222 oo C,2" = (1 e 2)n+l — gn+l

- 3n+l - 2n+1-
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